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ABSTRACT
In this paper we study the prevalence of unique entity identifiers
on the Web. These are, e.g., ISBNs (for books), GTINs (for com-
mercial products), DOIs (for documents), email addresses, and oth-
ers. We show how these identifiers can be harvested systematically
from Web pages, and how they can be associated with human-
readable names for the entities at large scale.

Starting with a simple extraction of identifiers and names from
Web pages, we show how we can use the properties of unique iden-
tifiers to filter out noise and clean up the extraction result on the
entire corpus. The end result is a database of millions of uniquely
identified entities of different types, with an accuracy of 73–96%
and a very high coverage compared to existing knowledge bases.
We use this database to compute novel statistics on the presence of
products, people, and other entities on the Web.

1. INTRODUCTION
Unique ids. The Web is a vast resource of named entities, such as
commercial products, people, books, and organizations. The focus
of this paper is on the entities that have unique ids. An id is any
string or number that distinguishes the entity from other entities in
a globally unique way. For example, commercial products have ids
in the form of GTINs, printed below the bar code on the package or
item. They also frequently appear on the Web. Figure 1 shows an
excerpt from a Web page about a commercial product. The GTIN
(8806085725072) appears at the bottom right.

Figure 1: A Web page snippet about a product
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Not only commercial products have ids; a surprisingly large por-
tion of other entities also do. Companies have tax identification
numbers; books have ISBNs; documents have document identi-
fiers; chemical substances have CAS registry numbers, and so on.
Web pages that talk about these entities often mention their ids.
Goal. Our goal is to harvest these ids together with the entity names
at large scale from the Web. That is, we want to build a database
that contains, for example, the entry 〈8806085725072, Samsung
Galaxy S4〉. Ids and entity names can be extracted from the Web
using named entity recognition methods (NER). Still, matching an
id to its entity name is far from trivial. First, Web pages usually
contain dozens of entity names, thus we must associate the proper
entity name with each id. For example, we must find that the correct
name for the id “8806085725072” is “Samsung Galaxy S4” – and
not “Samsung”, “VAT”, or “GT-I9295ZAADBT”. Moreover, some
Web pages contain several ids and several entity names at the same
time, so we must be able to correctly match the corresponding pairs
of ids and names. Finally, if we want to find entity ids and names
at Web scale, we need an approach that is both fast and resilient. It
must run on hundreds of millions of Web pages and accept arbitrary
pages, with possibly erroneous content, broken structure, or noisy
information. This makes it impossible to rely on wrapper induction
or any predefined or learnable DOM tree structure.
Contribution. In this paper, we show how to systematically collect
unique ids from Web pages, and how to associate each id with the
correct entity name. We first extract ids and candidate names from
each Web page using vanilla NER methods. Then, we make use of
the inherent characteristics of unique identifiers to filter the name
candidates so as to keep only the correct entity names. Our method
is scalable, fast, and resilient enough to run on arbitrary Web pages.

We extract millions of distinct entities from the Web with an ac-
curacy of 73% to 96% depending on the entity type, yielding a
database of entity ids and names together with the Web pages where
they appear. The crucial advantage of this database is that every
entity is guaranteed to be unique, which allows us, for instance,
to count distinct entities without being biased by duplicates. We
can thus perform a detailed study of entities that exist on the Web,
including identification of Web sites that are hubs for books or doc-
uments, building statistics about frequent names of people, tracing
the flow of products between different countries, or identifying top
producers. In other words, we show not only how entities with
unique ids can be extracted from the Web, but also how they are
distributed on the Web and in the world. Our contributions are:

• The paradigm of id-based entity extraction (IBEX), harvesting
entity ids with their names at large scale from the Web.
• A database of unique entities with millions of objects and an

accuracy of 73–96%.
• Detailed analyses about the distribution of these objects.



2. RELATED WORK

2.1 Information Extraction (IE)
Named Entity Recognition. Named entity extraction (NER) is the
task of recognizing and categorizing real-world entities in textual
resources [32, 11]. We rely on NER to spot ids and candidate names
in Web pages. However, our focus is rather on associating the cor-
rect name with each id, choosing from several extracted name can-
didates. While NER can spot entity names, it cannot determine the
correspondence between ids and names if the page contains several
of those. Our approach aims at solving this problem.
Wrapper induction. Wrapper induction [42, 13, 12, 16, 43, 14,
15, 8, 20] learns the structure of a Web page and produces a so-
called wrapper, which can then be applied to extract information
from other Web pages of the same form. These approaches exploit
the fact that large Web sites are typically generated from a source
by the help of templates. In our setting, we cannot make such an
assumption, as we target arbitrary Web pages of arbitrary sites. We
may have only a handful of pages for each site, plus a large num-
ber of pages that do not belong to any large site. The DIADEM
project [17] can deal with such a variety, but is domain-specific
and targets the deep Web, while we target the surface Web.
Structured IE. A large suite of approaches (e.g., [2, 23, 24, 45])
aims at extracting information from structured sources – using vi-
sual clues [33, 6], the DOM structure [41], or the schema [4].
Unlike these, our method does not assume any particular struc-
ture in Web pages. It does not require the pages to resemble each
other, it does not need training data, and it does not assume any
given schema. Rather, it works on both structured and unstructured
sources across arbitrary sites and domains.
Product extraction. One of the applications of our work is the
extraction of commercial products. Previous work on product ex-
traction focused on matching product offers to products and their
attributes [21, 22]. The work by [22] succinctly mentions also
manufacturer extraction from product titles. Supervised learning
approaches have been proposed to update product catalogues us-
ing new offers [27], or to determine product prices [1]. These ap-
proaches, however, build on an existing catalog of products, while
our goal is the creation of such a catalog.

Other projects [31, 30, 19] handle product attribute extraction.
[29] gives a method to discover product information regions on
Web pages. While these approaches share our goal of extracting
product data from Web pages, they do not target the creation of a
global database of unique products.
Knowledge bases. Recent work has led to the automated creation
of large knowledge bases [34, 3, 10, 5]. These contain many popu-
lar and important entities but do not aim at being exhaustive. DBpe-
dia, e.g., contains “only” a few ten thousand instances of the class
Product, most of them being named ships. This is because these
KBs focus more on popular entities than on the long tail. Our goal,
in contrast, is systematic collection of products from the Web.
Web-scale databases. Several projects [38, 18, 7, 28, 44] construct
a queryable database of Web objects. While we share this goal,
we use ids to achieve it. This has two advantages. First, we can
run extraction even on the Web pages with poor structure, or no
structure at all. Second, we build a database of unique entities,
where each entity is guaranteed to appear at most once.
Entity databases. There are several databases of unique Web en-
tities. The UPC Database (http://www.upcdatabase.com) con-
tains 1.6M ids of commercial products, but is not available for
download. Other id databases are GTIN13.com (http://gtin13.
com) and Smoopa (http://www.smoopa.com/), but no informa-
tion on their content is freely available. The International DOI

Table 1: Id types (∗ indicates pseudo-ids)

Id type Entities

ISBN Books
GTIN Products
CAS Chemicals
DOI Documents
VATIN Companies
BIC Banks
ISIN Stocks
VIN Vehicles
GRID Digital recordings

Id type Entities

ISAN Audiovisual material
Pub# US Patents
ILU Containers
MESH Chemicals
OMIM Diseases
ICD-10 Diseases
Email People/organizations∗

IBAN People/organizations∗

Phone People/organizations∗

Foundation (http://www.doi.org/) gives identifiers to text doc-
uments. There are 84M document ids, but the foundation does
not provide a search capability across all documents, and the data
cannot be downloaded. The Chemical Abstracts Service (CAS)
(http://www.cas.org) maintains a registry of more than 71M
organic and inorganic substances. However, this data is not avail-
able for free. The Common Chemistry Website (http://www.
commonchemistry.org/) provides publicly available data, but it
covers only 7,900 substances. As for databases about people, there
are social networks that collect personal data and commercial Web-
sites that scrape the Web for it (e.g. http://www.yasni.com/).
Neither of these provides downloadable datasets.

3. PROBLEM STATEMENT
Our goal is to build a database of unique entity ids from Web

pages, and to associate a human-readable name with each of those.
We now formally define our notion of ids and the problem we study.
Ids. For us, an entity is any real-world object such as a person, a
book, a product model, or a shipping container. An id is a string
that is used as an identifier for an entity.

There are different types of ids, i.e., groups of ids that have the
same syntax and refer to entities of the same domain. For exam-
ple, ISBNs are sequences of 10-13 digits that identify books. CAS
numbers are sequences of 8 digits that identify chemicals. We only
assume that: (1.) no two entities can have the same id (e.g., one
ISBN cannot refer to two books), and (2.) one entity can only have
at most one id of each type (e.g., a book can only have one ISBN,
but it can have also a GTIN, since books are also products).

For some id types, assumption (2.) does not hold. For example,
every personal email address belongs to one person, but one person
can have several email addresses. We call such identifiers pseudo-
ids. Our approach can also collect entities by their pseudo-ids, but
it cannot guarantee the uniqueness of the collected entities in this
case: for instance, the same person may appear in the constructed
database multiple times under their various email addresses.

We assume that every entity has one or several names. A name
is a human-readable string that identifies the entity intuitively.
Examples. The notion of ids and id types is a general one, so our
approach can be applied to a variety of domains. Table 1 presents
examples of id types. They cover both entities that are intrinsically
Web-based, such as Web documents, but also a large number of
real-world entities, such as chemicals, commercial products, vehi-
cles, books, or magazines. The experiments in this paper will focus
on the following id types, exemplified in Table 2:
• Global trade item numbers (GTINs) are identifiers for commer-

cial products.
• CAS numbers are identifiers for chemical substances.
• Digital object identifiers (DOIs) identify electronic documents.
• email addresses as pseudo-ids for people.

http://www.upcdatabase.com
http://gtin13.com
http://gtin13.com
http://www.smoopa.com/
http://www.doi.org/
http://www.cas.org
http://www.commonchemistry.org/
http://www.commonchemistry.org/
http://www.yasni.com/


Table 2: Examples for ids and entity names
Id type Id Entity name

GTIN 00068888883955 Pyramid PA305 100w Rack Mount Amplifier with Microphone Mixer
CAS 78123-16-7 N-benzyl-2-(2-methyl-1H-indol-3-yl)acetohydrazide
DOI 10.1037/a0024143 Cognitive niches: An ecological model of strategy selection.
Email widom@cs.stanford.edu Dr. Jennifer Widom

Problem statement. The input to our method is a set of Web pages
obtained from a Web crawl. In addition, we are given an id type t
and two NER modules for t: the id validator f id

t and the name
finder f name

t . The id validator is a function that takes as input a
string and returns true iff the string is an id of type t. The name
finder is a function that, given an id of type t and a string, extracts
possible candidate names for that id from the string. These can be
single tokens or multi-words.

The output of our method is an entity database for type t, con-
taining ids of type t with their associated names. In addition, we
store the URLs of the Web pages where the entities were found.

4. APPROACH

4.1 Method Description
This section presents the three phases of our approach, which

are implemented in the Map-Reduce framework. Section 5 gives
details about Phase 1.

Phase 1. The first phase extracts ids and name candidates. Let
us consider each page p ∈P . We first split the page into records
r1, . . . ,rn, where each record is a region of p that contains exactly
one id. For each record ri, we extract the id idi and all name can-
didates namei, j, j = 1, ...,mi using f id

t and f name
t (see Section 5 for

details). To account for differences in writing, we normalize all
name candidates by upper-casing them, and by retaining only let-
ters (alphanumeric characters for CAS). For each name candidate,
we compute a score that indicates its likelihood of being the correct
name for idi. The result of this process is a table of the following
form for each record ri:

R1p
i ··= {〈idi,namei, j,scorei, j,url(p)〉 | j = 1, ...,mi}

Its rows contain the id, a name candidate for this id, a score for this
name candidate, and the URL of the page. Note that the same name
may occur multiple times in R1p

i (with the same score or with dif-
ferent scores) if the same name was extracted multiple times in ri.
The output of the first phase is then the union of these tables:

R1 ··=
⋃

p∈P,ri∈p

R1p
i

Phase 2. The previous phase extracted all possible name candi-
dates for all id occurrences. Hence, R1 is very noisy and contains
many wrong candidates. For instance, some name candidates are
not entity names, but rather descriptive elements, such as “Price”,
“see also”, or “plastic”. This problem could be reduced by using a
better entity tagger f name

t , but will ultimately always appear.
Since our corpus is large, we expect such non-specific names to

appear uniformly over several ids, whereas the correct names will
accumulate on one id. As an example, Figure 2 shows three real
distributions of names across ids from our experiments (Section 6).
The chemical name “amphetamine” appears 120 times with 10 dif-
ferent ids. But it appears 99 times for one of these ids (which is the
correct id of amphetamine). The non-specific names “plastics” and
“propionate” appear more uniformly with different ids.

plastics amphetamine propionate
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Figure 2: Frequency of occurrence of a name per id. The ith

bar indicates how many times the name occurs with its ith id.

Our goal in Phase 2 is to identify names such as “amphetamine”
that show a clear preference for one id. Formally, we count for each
name n how often it appears with the id id in R1:

freqn(id) ··=
∣∣{〈id′,n′,s′,u′〉 ∈ R1 | n′ = n, id′ = id}

∣∣
Now, we attempt to identify names n whose distribution freqn shows
a clear outlier. We experimented with several outlier detection
methods, see our technical report [35]. In the end, the following
technique worked best. Let id1

n and id2
n be the ids with the highest

and second highest value for freqn(·), breaking ties arbitrarily. The
distribution freqn(·) is said to have an outlier if id1

n appears in more
than 30% of the cases, and at least 3 times more often than id2

n . If
a name appears with only one id, it is always considered an outlier.

freqn(id
1
n)> 0.3×∑i freqn(i) freqn(id

1
n)> 3× freqn(id

2
n)

This technique is robust enough to work for all id types that we
considered. Now, Phase 2 removes all names with no clear outlier:

R2 ··= {〈id1
n ,n,s,u〉 | 〈id1

n ,n,s,u〉 ∈ R1, n has outlier id1
n}

The resulting table R2 contains names that are specific to one id.

Phase 3. While we have now filtered out the insufficiently specific
names, entities may still have several names, some of which may be
wrong. To remove less likely names, we pick, for each id, the name
that appears most often. If the most frequent candidate names have
the same frequency, we take the one with the highest score (ties on
the score are resolved arbitrarily):

R3′ ··= {〈id,n,s,u〉 | 〈id,n,s,u〉 ∈ R2, freqn(id) = max
n′

freqn′(id)}

R3 ··= {〈id,n,u〉 | 〈id,n,s,u〉 ∈ R3′, s maximal for this id}

The result R3 of Phase 3 is our final entity database: for every id, R3
contains one name and the URLs of all pages where it was found.



4.2 Coverage
If we wanted to build a comprehensive database of all entity ids

on the Web, we would have to parse all existing Web pages. How-
ever, in practice, we can only access a subset of pages that was
found through crawling. Hence, our dataset is always incomplete.
It may happen, for example, that we see the same entity id over and
over again in our crawl, instead of seeing new ids that we could add
to our collection. In the worst case, we could crawl half of the Web,
but see only a small fraction of the distinct entities that exist.

Fortunately, this is unlikely to happen if we assume the crawl is
sufficiently random. To show this, we focus on the set W of pages
on the entire Web that mention at least one entity of type t, and we
consider P ′ ··= P ∩W the set of the input pages P that mention
some entity of type t. We write α for |P ′|/ |W |, and assume that
P ′ is a subset of α |W | pages drawn uniformly at random in W .

We call E the set of all different entities of type t appearing in W ,
and E ′ ⊆ E those appearing in P ′. Intuitively, E ′ are the entities
of E that we can extract from our sample. We assume that some
entity of E occurs in strictly more than one page of P , and claim:

THEOREM 1. For any fixed 0<α < 1, the expected value of |E ′|
over draws of P ′ is strictly greater than α |E |.

In other words, if we crawl a random subset of 50% of all Web
pages that mention entities, then we can expect to see more than
50% of all entities in our sample. The result is proven in our tech-
nical report [35]. Intuitively, we show that, for any entity e∈ E , the
probability of obtaining e is ≥ α , which can be seen by choosing
one arbitrary page p where e occurs and noticing that the probabil-
ity of drawing p is at least α .

5. IMPLEMENTATION
We now discuss the detailed implementation of Phase 1 of our

method from Section 4, where we parse a Web page to extract
records, ids, and name candidates.

5.1 Parsing Web Pages
Requirements. The Web pages that we consider are written in
HTML, which in theory can be parsed to a DOM tree that rep-
resents the structure of the page. In practice, a large number of
HTML documents on the Web are ill-formed. In addition, the struc-
ture of the DOM tree does not necessarily correspond to the page
structure as seen by a human. For example, if a page contains sev-
eral H1 tags, then a human sees several sections. The DOM tree,
however, contains just one parent node with alternating H1-nodes
and text-nodes as children. If the page discusses different enti-
ties, then it is likely that each entity falls within one H1-dominated
block. The DOM tree, however, does not make this directly ap-
parent. More generally, many websites use HTML markup in a
non-semantic way which leaves little information in the DOM tree
about the relationship between the elements in the page.

Our method is inspired by MDR [41], but applies more generally
to Web pages without tabular structures. Most importantly, it is
robust enough to work on Web pages without a proper DOM tree,
and simple enough to run at Web scale on arbitrary input.
Frame trees. We segment the HTML page p into a frame tree (the
name of which is not related to frames in HTML documents). A
frame tree looks like a DOM tree, but contains additional nodes for
blocks that are introduced by separators. A separator is a tag that
starts a new paragraph, such as H1,...,H6, HR, BR, sequences of BR,
and P. Any opening HTML tag starts a new frame, and any match-
ing closing tag closes the current frame. If there is no closing tag
in a scope of a parent frame, then the current frame is closed when
the parent frame is closed. Additionally, every separator starts a

function parse(HTML document d, parent tag t):
// d is passed by reference so recursive calls may modify it
FrameTree result← 〈tag: t, content: [ ]〉
if t is self-closing then return(result)
while |d|> 0

if d starts with tag t ′

if t ′ is closing
if t ′ closes t

remove t ′ from d
break

end if
if t ′ 6� t

remove t ′ from d
continue

end if
break

end if
if t 6� t ′ then break
remove t ′ from d
if t ′ is separator

f ← [ parse(d, t ′) ]
f .appendAll(parse(d, t ′∗).content)

result.content.append(〈tag: t ′∗, content: f 〉)
else

result.content.append(parse(d, t ′))
end if

else
read and remove text s from d
if s is not whitespace then

result.content.append(s)
end if

end while
return result

Algorithm 1: Building a frame tree

new frame that ends at the next occurrence of a separator of equal
or higher weight, or at the end of a parent frame.

Algorithm 1 parses an HTML document recursively into a frame
tree. It is called initially with a dummy parent tag DOC, and relies
on a containment relation� on tags, so that t � t ′ if a tag t can con-
tain a tag t ′. For example, DOC�HTML�BODY�DIV. This order
can be derived from the HTML grammar. In addition, we introduce
an artificial tag t∗ for every separator tag t. For example, we intro-
duce the tag H1∗, which will be the label for a frame that consists of
a H1-header and the following text. We extend� to cover also these
tags. For example, a H1-frame can contain H2-frames: H1∗�H2∗.
The algorithm yields a tree of frames, whose leaf nodes are text
nodes. We call these nodes text frames. Algorithm 1 will produce
frame trees even if the page is not fully standards-compliant. Our
technical report [35] shows an example for the algorithm.

5.2 Extracting Records
Once Algorithm 1 has produced a frame tree for an input Web

page, we must find records in this tree. A record r of type t in a
page p ∈P is the largest subtree rooted at some node of the frame
tree of p that contains a single id of type t, using f id

t to identify
which text frames of the frame tree are ids. For this, a text frame
must correspond exactly to one id, with no surrounding text. We
call r a detail record if it is the only record of p; otherwise, it is a
free record. Intuitively, detail records occur when the entire page
deals with the entity, and free records typically belong to listings of
entities, e.g., lists or tables, or free-floating descriptions of entities.



Table 3: Total number of items, accuracy, and recall after each phase
GTIN items CAS items DOI items Email items

Num. Acc. Rec. Num. Acc. Rec. Num. Acc. Rec. Num. Acc. Rec.

Phase 1 3,929,312 38%±8% 60% 241,602 76%±6% 80% 1,167,810 52%±8% 50% 13,625,860 90%±6% 63%
Phase 2 2,550,703 76%±8% 48% 235,779 86%±5% 76% 1,038,950 68%±9% 45% 13,625,860 90%±6% 63%
Phase 3 2,550,703 82%±7% 50% 235,779 96%±3% 78% 1,038,950 73%±8% 47% 13,625,859 90%±6% 63%

Table 4: Richest sources for entities of various entity types
Product sources Items

www2.loot.co.za 304,431
www.books-by-isbn.com 50,683
gtin13.com 26,834
en.wikipedia.org 21,873
www.buchhandel.de 18,264

Chemical sources Items

www.chembuyersguide.com 129,211
www.chemnet.com 22,061
www.lookchem.com 12,354
www.seekchemicals.com 7,326
www.tradingchem.com 4,769

Document sources Items

wwwtest.soils.org 20,635
www.plosone.org 19,261
www.citeulike.org 13,491
www.astm.org 10,020
bja.oxfordjournals.org 9,030

Once all records in a page have been identified, the function
f name
t is applied to all text subframes of each record. This yields a

set of candidate names per record. We score each candidate by its
negative distance from the id, and by taking into account the tags
that surround the candidate (e.g., H1 or B). Details of how the com-
ponents of this score (and alternative scores) perform can be found
in our experimental evaluation in our technical report [35]. The ids
together with their candidate names and scores make up the table
R1 of our Phase 1.

5.3 Discussion
Our approach deals correctly with many common structures in

HTML documents that refer to entities. If, for example, each row
of an HTML table contains an id, then each row will become a
record in Algorithm 1. Similarly, for HTML lists, if each item in
an HTML list contains an id, then each item will become a record.
This holds no matter whether the page uses the TABLE tag, the UL
tag, or in fact any other tag.

If each row of a table corresponds to an entity, then the entity
names will usually all be in the same column. Conversely, a col-
umn that always contains the same word is unlikely to contain an
entity name. As our approach is generic, Phase 1 extracts all can-
didate names agnostically. Then, Phase 2 will remove globally fre-
quent names. Thus, Phase 2 will have the same effect as discarding
frequent words from table columns, just that it operates on a global
table. Finally, Phase 3 will choose the most frequent name for an id.
Thus, Phase 2 and Phase 3 together act like the TF-IDF mechanism
in information retrieval.

6. EXPERIMENTS
Setup. We performed experiments on the English portions of the
ClueWeb09 and ClueWeb12 Web crawl. In total, our 35 TB corpus
contains 1.2 billion Web pages. We evaluated our approach for the
GTIN, CAS, and DOI id types, as well as the pseudo-id email1. We
used simple NER modules that basically use regular expressions
(see our technical report [35] for details). The extraction process
took 10 hours on a Hadoop cluster of 10 nodes, with the total ca-
pacity of 80 map-reduce tasks, amounting to an average of about
3,000 pages, or 100 MB, processed per second and per node.
Quality. To verify the quality of our name extraction, we produced
a gold standard set of ids and entity names. For this purpose, we
randomly sampled, for each type, 200 occurrences of ids in pages
from our Web corpus. We annotated each id manually with its cor-

1Since many people share the same name, we skipped Phase 2 for
email addresses.

rect name in the page. Then, we compared the output of each phase
to this gold standard. For the first two phases, as there are multiple
name candidates per id, we pick one name at random for each id, to
simulate a guess. Table 3 shows our results, providing Wilson inter-
vals [9] to ensure their statistical significance. We considered each
id, and compared the assigned name to the correct name from the
gold standard. Accuracy is the proportion of correct names. Recall
is the proportion of correct names that was correctly assigned.

As we can see, Phase 1 cannot find all entities that have an id.
It also has a low accuracy, because it produces many name candi-
dates, one of which is chosen at random for the evaluation. This
is essentially what a naive baseline algorithm would do: it would
extract all candidate names on a Web page, and assign one name
at random to each id on that page. As we see, the performance is
mediocre, with a accuracy of 38% for GTINs.

However, in our approach, Phase 2 and 3 filter out the erro-
neous names, increasing the accuracy up to 96%. The recall varies
through the phases, since the set of candidate names per id shrinks,
which may increase or decrease the recall. In the end, our method
assigns the correct name for 83% of the products, 96% of the chem-
ical substances, 73% of the documents, and 90% of the emails.
Quantity. As Table 3 shows, our database contains 2,550,703 prod-
ucts, 235,779 chemical substances, 1,038,950 documents, as well
as 13,625,859 email addresses. 55.6% of our products are books.
The other products include things as diverse as office supply items,
DVDs, or USB cables. While email addresses are pseudo-ids, and
we cannot guarantee uniqueness in this case, all other ids are unique.
This means that our numbers provide a lower bound for the number
of chemical substances, unique documents, books, and commercial
products on the Web. Our database is also orders of magnitude
larger than other public databases.

To estimate the coverage of our database, we compared our data
to the YAGO KB [34], focusing on books, whose ids (ISBN codes)
are known to YAGO. YAGO contains 11,271 books with an ISBN.
Of these, 1,662 appear in our database. We assume that we missed
some of the YAGO books because Wikipedia, the source of YAGO,
is not necessarily entirely in our corpus; furthermore, our clean-
ing phases may remove correct book candidates. By contrast, our
database contains 1.4 million books that are unknown to YAGO.
Extensions. In the technical report [35], we showcase extensions
and applications of our approach. These include extending the ex-
tractors to other id types, extracting entity attributes (such as molec-
ular formulae for chemical substances), or merging our database
with the YAGO KB [34] as an input to the PATTY system [26], to
discover more typed textual patterns.

www2.loot.co.za
www.books-by-isbn.com
gtin13.com
en.wikipedia.org
www.buchhandel.de
www.chembuyersguide.com
www.chemnet.com
www.lookchem.com
www.seekchemicals.com
www.tradingchem.com
wwwtest.soils.org
www.plosone.org
www.citeulike.org
www.astm.org
bja.oxfordjournals.org


Table 5: Common person names
Family names

Smith 84,376
Johnson 55,277
Brown 46,499
Jones 45,322
Williams 43,492

Given names

John 238,446
David 207,931
Michael 155,880
Mark 117,755
Robert 109,814

Full names

John Smith 1,969
David Smith 1,484
John Doe 1,371
Michael Smith 990
David Brown 899

Table 6: Top companies by prod.
Company Prefix Products

Bernat 0057355 1,116
Panasonic 0037988 929
Lion 0023032 927
Nikon 0018208 829

Table 7: Top email domains
Domain Addresses

gmail.com 304,236
yahoo.com 290,292
hotmail.com 281,498
aol.com 259,769

7. ANALYSES
Our dataset is a huge resource of Web objects, which can give

rise to different analyses – much in the spirit of Culturomics [25].
The following experiments illustrate this.

7.1 Resources
Our dataset can identify Internet domains that are particularly

rich in different types of Web entities. Table 4 shows the best data
sources that we could determine for email addresses, chemicals,
and documents. This analysis could help steer information extrac-
tion approaches to target domains that are rich in the desired items.

We also computed the most frequent email providers occurring
in the email addresses that we collected (Table 7). Addresses come
mostly from Gmail, followed by Yahoo! and Hotmail, which are
indeed the top three email providers, as determined by [36].

7.2 People
Common names. Our extraction found 13 million email addresses
with an associated person name. Since email addresses are only
pseudo-ids, we may not conclude that we found 13 million people.
However, we can still identify the most common given names and
family names on the Web (Table 5). The popular first names that
we found correspond roughly to the frequent English names. For
instance, our top 50 male given names cover 43 of the top 50 male
given names of the US 1990 census data [37].
Gender. By intersecting our set of given names with the US cen-
sus data about common female and male first names, we extended
the analysis to find the gender of the people on the Web. For the
331 unisex names we attributed both genders proportionally to their
gender priors, based on the name frequency statistics. We find that
women are slightly under-represented: out of 11.6 million names
in our database whose gender we could identify, only 47% were
female. 1,990,290 names were not recognized as American names.

7.3 Commercial Products
Company names. The first 4-7 digits of the GTIN are a com-
pany identifier. Since there is no publicly available database to map
these prefixes to company names, we did as follows. We assume
that product titles often contain the company name. We grouped
the GTINs by their 4-digit prefix and computed the word that was
most frequent within a group, but infrequent outside the group. A
manual analysis on a random sample of 80 products shows that this
method can indeed identify the company name (or at least part of it)
correctly in 83% of the cases, with a Wilson score interval of±7%.
Table 6 shows the companies with the most products.

Table 8: Countries by production
Country #Products

USA 1,024,219
UK 59,542
Germany 26,949
Japan 17,353
France 12,845

Country GDP (trillion)

USA 14.99 US$
China 7.20 US$
Japan 5.87 US$
Germany 3.60 US$
France 2.77 US$

Figure 3: Intra- and inter-regional trade (log-scale)

Countries. The first 3 digits of a GTIN identify a country of pro-
duction. For this analysis, we extracted the GTINs from the entire
ClueWeb corpus (not just the English one). We then calculated the
number of unique items produced in different countries (Table 8).
This ranking has a remarkable overlap with the list of countries by
GDP provided by the World Bank [39].
Global trade. While the GTIN indicates where a product was pro-
duced, the top level domain of a page where the product appears
probably identifies a country where the product is sold. This al-
lows us to trace product exports (Figure 7.3). The export patterns
that we extracted are comparable to the true flow of products be-
tween the regions, as estimated by the WTO [40] (see our technical
report [35] for details).

8. CONCLUSION
In this paper, we have shown how to systematically harvest enti-

ties with unique ids from the Web. By making use of the properties
of ids, we could extract entity names with an accuracy of 73–96%,
yielding a database of 13 million email addresses with their name,
235 thousand chemical substances, 1 million documents, 1.4 mil-
lion books, and 1.1 million other commercial products. We believe
that this dataset is the first public database of canonicalized items
of this size. We have shown possible uses of this database by con-
ducting a number of analyses, and expect that many more exciting
experiments can be conducted with our data.

We believe that our methodology is applicable not just to the
types of entities that we worked with in this paper, but also to a
broad range of other entities, which will make the Web ever more
semantic and more useful. All data and analyses are available at:
http://resources.mpi-inf.mpg.de/d5/ibex.
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