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Abstract

Following a period of expedited progress in the capabilities of digital systems, the
society begins to realize that systems designed to assist people in various tasks can
also harm individuals and society. Mediating access to information and explicitly or

implicitly ranking people in increasingly many applications, search systems have a substantial
potential to contribute to such unwanted outcomes. Since they collect vast amounts of data
about both searchers and search subjects, they have the potential to violate the privacy of
both of these groups of users. Moreover, in applications where rankings influence people’s
economic livelihood outside of the platform, such as sharing economy or hiring support
websites, search engines have an immense economic power over their users in that they
control user exposure in ranked results.

This thesis develops new models and methods broadly covering different aspects of
privacy and fairness in search systems for both searchers and search subjects. Specifically, it
makes the following contributions:

• We propose a model for computing individually fair rankings where search subjects
get exposure proportional to their relevance. The exposure is amortized over time
using constrained optimization to overcome searcher attention biases while preserving
ranking utility.

• We propose a model for computing sensitive search exposure where each subject gets
to know the sensitive queries that lead to her profile in the top-k search results. The
problem of finding exposing queries is technically modeled as reverse nearest neighbor
search, followed by a weekly-supervised learning to rank model ordering the queries
by privacy-sensitivity.

• We propose a model for quantifying privacy risks from textual data in online com-
munities. The method builds on a topic model where each topic is annotated by a
crowdsourced sensitivity score, and privacy risks are associated with a user’s relevance
to sensitive topics. We propose relevance measures capturing different dimensions of
user interest in a topic and show how they correlate with human risk perceptions.

• We propose a model for privacy-preserving personalized search where search queries
of different users are split and merged into synthetic profiles. The model mediates
the privacy-utility trade-off by keeping semantically coherent fragments of search
histories within individual profiles, while trying to minimize the similarity of any of
the synthetic profiles to the original user profiles.

The models are evaluated using information retrieval techniques and user studies over a
variety of datasets, ranging from query logs, through social media and community question
answering postings, to item listings from sharing economy platforms.
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Kurzfassung

Nach einer Zeit schneller Fortschritte in den Fähigkeiten digitaler Systeme beginnt die
Gesellschaft zu erkennen, dass Systeme, die Menschen bei verschiedenen Aufgaben
unterstützen sollen, den Einzelnen und die Gesellschaft auch schädigen können.

Suchsysteme haben ein erhebliches Potenzial, um zu solchen unerwünschten Ergebnissen
beizutragen, weil sie den Zugang zu Informationen vermitteln und explizit oder implizit
Menschen in immer mehr Anwendungen in Ranglisten anordnen. Da sie riesige Datenmen-
gen sowohl über Suchende als auch über Gesuchte sammeln, können sie die Privatsphäre
dieser beiden Benutzergruppen verletzen. In Anwendungen, in denen Ranglisten einen Ein-
fluss auf den finanziellen Lebensunterhalt der Menschen außerhalb der Plattform haben,
z. B. auf Sharing-Economy-Plattformen oder Jobbörsen, haben Suchmaschinen eine im-
mense wirtschaftliche Macht über ihre Nutzer, indem sie die Sichtbarkeit von Personen in
Suchergebnissen kontrollieren.

In dieser Dissertation werden neue Modelle und Methoden entwickelt, die verschiedene
Aspekte der Privatsphäre und der Fairness in Suchsystemen, sowohl für Suchende als auch
für Gesuchte, abdecken. Insbesondere leistet die Arbeit folgende Beiträge:

• Wir schlagen ein Modell für die Berechnung von fairen Rankings vor, bei denen
Suchsubjekte entsprechend ihrer Relevanz angezeigt werden. Die Sichtbarkeit wird
im Laufe der Zeit durch ein Optimierungsmodell adjustiert, um die Verzerrungen
der Sichtbarkeit für Sucher zu kompensieren, während die Nützlichkeit des Rankings
beibehalten bleibt.

• Wir schlagen ein Modell für die Bestimmung kritischer Suchanfragen vor, in dem für
jeden Nutzer Aanfragen, die zu seinem Nutzerprofil in den Top-k-Suchergebnissen
führen, herausgefunden werden. Das Problem der Berechnung von exponierenden
Suchanfragen wird als Reverse-Nearest-Neighbor-Suche modelliert. Solche kritischen
Suchanfragen werden dann von einem Learning-to-Rank-Modell geordnet, um die
sensitiven Suchanfragen herauszufinden.

• Wir schlagen ein Modell zur Quantifizierung von Risiken für die Privatsphäre aus
Textdaten in Online-Communities vor. Die Methode baut auf einem Themenmodell
auf, bei dem jedes Thema durch einen Crowdsourcing-Sensitivitätswert annotiert
wird. Die Risiko-Scores sind mit der Relevanz eines Benutzers mit kritischen Themen
verbunden. Wir schlagen Relevanzmaße vor, die unterschiedliche Dimensionen des
Benutzerinteresses an einem Thema erfassen, und wir zeigen, wie diese Maße mit der
Risikowahrnehmung von Menschen korrelieren.

• Wir schlagen ein Modell für personalisierte Suche vor, in dem die Privatsphäre geschützt
wird. In dem Modell werden Suchanfragen von Nutzer partitioniert und in synthetische
Profile eingefügt. Das Modell erreicht einen guten Kompromiss zwischen der Such-
systemnützlichkeit und der Privatsphäre, indem semantisch kohärente Fragmente
der Suchhistorie innerhalb einzelner Profile beibehalten werden, wobei gleichzeitig
angestrebt wird, die Ähnlichkeit der synthetischen Profile mit den ursprünglichen
Nutzerprofilen zu minimieren.
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Die Modelle werden mithilfe von Informationssuchtechniken und Nutzerstudien ausgewertet.
Wir benutzen eine Vielzahl von Datensätzen, die von Abfrageprotokollen über soziale Medien
Postings und die Fragen vom Q&A Forums bis hin zu Artikellistungen von Sharing-Economy-
Plattformen reichen.
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1.1 Motivation

Following a period of expedited progress in the capabilities of digital systems, the
society begins to realize that systems designed to assist people in various tasks
can also harm individuals and society. The harm may occur across a number of

dimensions, ranging from privacy intrusion caused by massive collection of personal data,
discrimination caused by algorithms trained on biased data, marginalization of certain
groups in online communities, polarization of society caused by massive personalization,
disinformation caused by viral spread of false information, all the way to addiction caused
by systems aiming to aggressively monetize people’s attention. These problems have gained
the attention of an interdisciplinary community of researchers, including computer scientists,
social scients, and legal scholars1.

The information retrieval (IR) community has also recently recognized FATE (standing
for Fairness, Accountability, Transparency, and Ethics) and the societal impact of IR
technology as one of the crucial directions for the field [Culpepper et al. 2018]. In line with
that direction, user rights in search systems motivate the work carried out in this thesis. In
particular, we focus on the issues of privacy and fairness.

1.1.1 Search systems

Search systems mediate access to information. Figure 1.1 schematically describes a search
environment. People may participate in this environment in two different roles – as searchers

1See, for instance, fatconference.org, ainow.com.

fatconference.org
ainow.com
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or search subjects. Searchers are the users who turn to search engines to find information.
Typically, they phrase their information needs as keyword queries, which are issued to the
search system. The ranking mechanism computes the relevance of each document in the
underlying collection to the issued search query, and returns a ranked list of documents
likely to be relevant to the searcher’s information need.

If a search system observes a searcher over time and collects all the queries she issues,
the relevance and the document ranking mechanism can be personalized. For instance, it
is possible to determine that a user querying for python is interested in the programming
language rather than the animal if she has issued other queries related to programming in
the past.

While traditionally documents are thought of as text, without necessarily any person
associated with them, many search systems nowadays implicitly or explicitly rank people.
Those people might be job seekers on human resource support platforms, such as LinkedIn,
or content creators on platforms like Spotify (music rankings), Amazon (product rankings),
Airbnb (apartment rankings), or Twitter (social media posting rankings). We call these
ranked users search subjects. Search subjects are exposed to searchers in ranking results,
and the currency in which they are being paid on the platform is the searcher’s attention.
Attention can be measured in terms of click rates, gaze fixation times measured in eye-
tracking studies, or more directly by the total amount of income earned by search subjects
from successful transactions.

Because search subjects are exposed to searchers in response to queries, search queries
determine the context in which exposure happens. Such a context can be positive or negative,
yielding exposure desirable in some scenarios and undesirable in others. Exposure might
be desirable, for instance, on hiring support platforms where job candidates want to be
exposed to recruiters searching for new employees. Exposure might be undesirable, however,
in social media search engines, when searchers issue sensitive queries related to diseases or
controversial political issues.

Since search systems collect vast amounts of data about both searchers and search
subjects, they have the potential to violate the privacy of both of these groups of users.
Moreover, by controlling the exposure of different search subjects and the quality of results
for different searchers, they have an immense power to deliver unfairly disparate levels of
service and experience to different people. The increasing dependence on search systems in
various platforms and areas of life thus calls for investigation of the issues of privacy and
fairness in search.

1.1.2 Privacy in search

Privacy of searchers. The potential to violate the privacy of searchers is a result of
search systems collecting search queries and aggregating them into detailed user profiles.
Because search engines are often the first source people refer to when seeking information
necessary for their work or hobbies, when seeking information related to health issues or
personal problems, or when planning travels, search histories often paint a very intimate
picture of a searcher’s life. Having all of this information aggregated per user profile leads
to a number of privacy risks, including linking of sensitive queries to real-world individuals,
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Query Ranking mechanism
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Figure 1.1: A schematic depiction of a search system. Users participate in the system either
as searchers or search subjects.

inference of additional user attributes that were not disclosed to the search system directly,
or profiling and targeting. We describe these risks in detail in the following paragraphs.

Linking of search histories to individuals is possible through queries containing pieces of
individual-specific information. This harm was exemplified when AOL released a naively
anonymized querylog with usernames replaced by random IDs in 20062. Following the
release, journalists were able to deanonymize some individuals by cross-referencing queries
containing phone numbers (some users might query for their own phone numbers either
deliberately or through copy-pasting mistakes) with phone book entries. Once deanonymized,
search histories enable further linking of individuals to sensitive information, including
queries related to topics like health or hygiene. Such attacks were demonstrated to be viable
beyond just search data. For instance, it is possible to match anonymized Netflix movie
recommendations with publicly available IMDB movie rating data, thus matching real-world
identities to possibly sensitive ratings revealing political or sexual orientations [Narayanan
and Shmatikov 2008].

A collection of large amounts of user data might also enable inference of information that
is not present in the data and perhaps explicitly protected by the users. It is feasible, for
instance, to infer demographic information using search logs [Bi et al. 2013]. Even beyond
relatively rich and complex search histories, very private data, such as personality traits,
can be inferred from items a user likes on a platform like Facebook3 [Kosinski et al. 2013].

Detailed user profiles might also be made available to third-parties, often without the
knowledge of the profile owner. Data can be passed on beyond the original intentions
in case of company mergers, or if the search provider infrastructure gets compromised.

2https://en.wikipedia.org/wiki/AOL_search_data_leak
3https://facebook.com

https://en.wikipedia.org/wiki/AOL_search_data_leak
https://facebook.com
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Beyond unintentional leaks and breaches, user data might also be intentionally used against
their interest. For instance, search providers use query histories for profiling and targeted
advertising. Especially if the topic of an ad is sensitive, such advertisement being displayed
in a user browser might lead to privacy breaches if seen by external observers.

Privacy of search subjects Privacy problems of search subjects are tied to exposure in
the ranking results of sensitive queries. As depicted in Figure 1.1, the query of a searcher
determines the context in which search subjects are exposed. Sensitive queries will as a
result lead to sensitive exposure. Examples of such queries include those topically related to
health, finance, or other personal issues, those which are unique to a user, such as phone
numbers or e-mail addresses, or those which are rather uncommon for a given user profile.

Sensitive exposure enabled hackers to scrape the profile data of around 2 billion Facebook
users in April 20184. Scraping user data on such a massive scale faces a fundamental problem
– how to enumerate all users in the system to get their profile URLs. The hackers had
reportedly acquired a database of e-mail addresses and phone numbers on the Dark Web,
and issued these as queries to Facebook’s search engine. As a response to these queries,
the engine returned links to the profiles of users to whom the e-mail or the phone number
belonged. There exist other scenarios of this kind - with adversaries not targeting any
particular individual but rather searching for targets matching their relevance criteria.
Examples include bloggers looking for examples to their stories, or governments looking for
politically controversial statements.

Adversarial situations like these could be potentially avoided if the search engines
computed the exposure information. Computing search exposure means reversing search
and, for each user profile, finding all the queries that yield the profile in the top-k results.

1.1.3 Fairness in search

Fairness for searchers. Delivering search results of disparate quality to different demo-
graphic groups might mean that historically disadvantaged groups receive worse access to
information. Thus, fairness for searchers has been understood as a lack of disparity in the
quality of results. In this spirit, Mehrotra et al. [2017] proposed a methodology to measure
whether a search engine delivers less satisfactory results to searchers from different groups
determined by attributes such as gender or age. It is worth noting that a search engine
might underperform for searchers from minority groups not necessarily intentionally, but
because it might have less observational data about these groups at its disposal to train the
algorithms, or perhaps because the relevance feedback collected from the majority groups is
biased against the minority.

Fairness for search subjects. Fairness for search subjects matters especially in scenarios
where rankings influence people’s lives outside of the platform. Such is the case for two-sided
economy platforms, including Airbnb or Uber, or hiring support platforms such as LinkedIn.
In each of these systems, subjects seek to be displayed high in the rankings as it increases

4https://www.independent.co.uk/news/world/americas/facebook-hackers-personal-data-
collection-users-cambridge-analytica-trump-mark-zuckerberg-latest-a8289816.html

https://www.independent.co.uk/news/world/americas/facebook-hackers-personal-data-collection-users-cambridge-analytica-trump-mark-zuckerberg-latest-a8289816.html
https://www.independent.co.uk/news/world/americas/facebook-hackers-personal-data-collection-users-cambridge-analytica-trump-mark-zuckerberg-latest-a8289816.html


1.2. Challenges 5

their chances of getting a real-world advantage, be it a higher income or being contacted
by recruiters. With such a tangible influence over people’s lives, search engines in these
scenarios should make sure their results are fair, or more specifically, that subjects get a fair
representation in the ranked results. Most papers thus far have proposed to quantify such
fair representation using different forms of diversity and exposure. In practice, exposure
can be determined in eye-tracking studies by measuring the time the searchers spend
investigating a result, or by estimating click probabilities for different ranking results. To
ensure fairness to individuals, a system should provide each subject the amount of exposure
that is proportional to her relevance [Biega et al. 2018]. Unfairness, however, often falls
along the lines of historical inequities. Ensuring fairness on a group level – for groups defined
by legally protected attributes, such as gender or race – means granting equal exposure to
different groups [Singh and Joachims 2018; Zehlike et al. 2017].

1.2 Challenges
In the context of the described privacy and fairness problems, this thesis tackles the following
specific challenges:

• Fair exposure for search subjects. To be individually fair to each subject, a search
system should grant subjects exposure that is proportional to their relevance. However,
if many subjects have similar relevance in a given search task, it is impossible to grant
everyone the attention they deserve in a single ranking. This problem arises because
of a phenomenon called position bias where the searchers pay disproportionately more
attention to subjects ranked higher, often irrespective of their relevance. As a result,
it is impossible to be individually fair to subjects in a single ranking. We can instead
look at sequences of rankings, and amortize exposure over time. This thesis tackles the
challenge of granting every subject in a ranking system the amortized exposure they
deserve.

• Sensitive exposure of search subjects. If a user’s post is returned as a top-k
answer to a sensitive search query, the user is exposed in a sensitive context. The
richness and volume of the content we post online make it challenging to maintain
awareness of the contexts in which our posts are returned as top-k results in search
systems. Online users have very limited information about the queries that lead others
to their profiles, yet - from the privacy perspective - such information is crucial if
these exposing queries are of sensitive nature. This thesis tackles the problem of
privacy-sensitive search exposure, that is, finding the sensitive queries for which any
post of a given user is returned as a top-k search result.

• Quantifying privacy risks from textual data. Prior work on privacy has largely
focused on structured data, such as databases or graphs. These solutions prove
insufficient for users in online communities that allow for creation of textual contents.
In particular, quantifying sensitive exposure requires a methodology for quantifying
privacy-sensitivity in text. This thesis tackles the problem of quantifying privacy risks
from textual data.
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• Privacy-preserving personalization for searchers. Information accumulated
within a single user account often draws an exact picture of a person’s life. Such
massive accumulation of personal data leads to significant privacy concerns. At the
same time, while caring about privacy, many users feel compelled to give in all of this
information in exchange for quality personalized results. This thesis tries to challenge
the assumption that detailed user profiles are necessary to personalize the results and
tackles the problem of designing mechanisms for delivering personalized search results
without the need for accurate user profiling.

1.3 Thesis contributions

Equity of Attention in Rankings. This dissertation develops a mechanism for reorder-
ing rankings such that each subject in the system receives attention from the searchers that
is proportional to their relevance. It is, however, impossible to achieve such a proportionality
in a single ranking – searchers are susceptible to position bias, which makes them pay
disproportionately more attention to subjects ranked at the top, irrespective of relevance.
We thus propose to amortize attention over time by reordering consecutive rankings. While
addressing fairness concerns, reordering subjects in the ranking will lead to accuracy loss
when order is no longer determined by relevance. Trying to balance both of these dimensions,
we formalize reordering as a constrained optimization problem, where we minimize unfairness
(measured as a disparity between attention and relevance) subject to constraints on ranking
accuracy loss. Choosing appropriate fairness and quality measures, the problem can be
solved as an Integer Linear Program (ILP). We apply and analyze the behavior of the
proposed mechanism on synthetic and real-world data of rental apartments from the Airbnb
platform5. This work was published as a full paper at SIGIR 2018 [Biega et al. 2018].

Sensitive Search Exposure. This dissertation develops methodology for quantifying
sensitive search exposure. We define search exposure as the problem of finding all the queries
that expose any of a user’s posts in the top-k results in a community’s search engine. With
this formulation, the problem can be seen as reverse search. Thus, if we think about search
as the problem finding k-nearest-neighbors (i.e., k documents closest to the search query
by a given similarity or relevance metric), one can cast search exposure as an instance of a
well-defined problem of Reverse-k-Nearest-Neighbors. Generating such queries is not enough
– our empirical analysis with user profiles from Twitter reveals that exposure sets for some
users might be enormous and largely contain noisy and meaningless queries. To make the
outputs useful to end users, we design a weakly-supervised learning-to-rank method, ordering
the queries such that those at the top are most concerning. We show that the queries can be
effectively ranked using only implicit signals which are readily available to service providers.
This work was published as a full paper at CIKM 2017 [Biega et al. 2017a].

R-Susceptibility. This dissertation develops methodology for quantifying privacy risks
from textual data in an online community. We propose to quantify the risks using a skeleton

5https://airbnb.com

https://airbnb.com
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of a topic model, which is a set of distributions over words. Each topic is annotated with
a privacy sensitivity score determined in a crowdsourcing study. The model provides each
user with the information on how relevant her postings are to each of the sensitive topics.
Relevance is determined using a number of measures capturing how personal a user’s interest
in a given topic is. To this end, beyond pure lexical relevance, we model how broad a user’s
interest in a domain the topic comes from is (attempting to differentiate professional from
personal interests), and how temporally spread a user’s interest is (attempting to differentiate
occasional and recurring interest). We moreover propose a notion of R-Susceptibility as a
measure showing the user how high they rank in a given community with respect to a given
sensitive topic. We evaluate the approach in a user study over profiles from three different
online communities. This work was published as a full paper at SIGIR 2016 [Biega et al.
2016].

Privacy-preserving personalization. This dissertation proposes a framework of Medi-
ator Accounts allowing for personalization of search results without the need to store exact
user interaction histories. Mediator platform splits and merges queries of different users into
synthetic user profiles, guided by a privacy-utility trade-off. Privacy is achieved by random
assignments, and utility by keeping semantically coherent contexts intact (that is, topically
similar queries of a user a kept together). The thesis moreover proposes a formalization
of the notions of profiling privacy and individual user utility. Our experimental results
using a querylog synthesized from the questions on the StackExchange platform6 provided a
detailed analysis of the trade-offs from the perspective of individual users, which should be
contrasted to much of the previous works focusing on system utility. Our results showed
that it is indeed possible to reconcile big profiling privacy gains with low personalization
utility loss, particularly for users with rich profiles and diversified interests. This work was
published as a full paper at SIGIR 2017 [Biega et al. 2017b].

In summary, the contributions of the thesis complement each other in a number of ways.
First, we are investigating two different societal problems – fairness (Chapter 4) and privacy
(Chapters 5, 6, 7). Second, we cover the problems of both search subjects (Chapters 4, 5,
6) and searchers (Chapter 7). Third, in the context of exposure specifically, we propose
mechanisms for dealing with both wanted (Chapter 4) and unwanted exposure (Chapters 5,
6).

1.4 Other contributions of the author

The author of this thesis has co-authored a number of other papers and initiatives related
to fairness and privacy, which are not included as contributions of this thesis.

• Our FATREC@RecSys 2017 paper [Chakraborty et al. 2017] focused on two-sided
match-making platforms such as Uber. We argued that a single match cannot be fair
as there are many relevant providers, yet only one provider receives the benefit of

6http://stackexchange.com

http://stackexchange.com
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the match. To allow for a more uniform distribution of the benefits, we proposed to
evaluate fairness over time by making sure the cumulative ratios of the deserved benefit
and the actual benefit are the same for all the providers in a system. Interpreting the
problem this way allowed us to draw a parallel to fair resource sharing algorithms,
which have been well studied in the networking community.

• We have demonstrated the generalizability of the Mediator Accounts framework [Biega
et al. 2017b] applying it to the problem of Privacy of Hidden Profiles, which we
identified and defined in our CIKM 2017 paper [Eslami et al. 2017]. Hidden profiles are
the profiles of users who decided to leave an online community, but whose data was
retained by the service providers for analytic purposes. Such data still poses privacy
risks for the users as it can easily be passed on beyond the original intentions, upon a
governmental inquiry, a company merger, or when the infrastructure of the provider
is compromised. Our results show that it is possible to protect the hidden profiles
by scrambling user data, at the same time keeping the analytic utility of the data
minimally affected.

• Our work on Mediator Accounts [Biega et al. 2017b] used a querylog synthesized from
an online Community Question Answering community. The derivation methodology
employed a simple heuristic for converting user questions to queries. To design better
querylog derivation methods, we conducted a user study with the goal of understanding
the query formulation process. We moreover proposed a methodology for deriving
other characteristics of information retrieval collections, such as relevance judgments,
from the structure of the CQA forums. This work is under submission.

• To facilitate further work on fairness in rankings, the author of this thesis has co-
authored a successful proposal for a TREC track focusing on the problem of fairness7.
TREC is an information retrieval conference whose goal is to design bechmarks
(document collections with relevance judgments), as well as metrics and standardized
experimentation protocols for the most important information retrieval tasks. This
track will run for the first time in TREC 2019.

• Our PSBD@CIKM 2014 paper proposes a method to probabilisticaly predict whether
users are personally afflicted by privacy sensitive states (such as depression or preg-
nancy), feeding the lexical information from their search histories into a probabilistic
graphical model. Preliminary experimental analysis in this paper showed that the
method can achieve a good accuracy in predicting privacy sensitive states. This work
laid a foundation for the R-Susceptibility project [Biega et al. 2016].

7https://fair-trec.github.io/

https://fair-trec.github.io/
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1.5 Prior publications
The results of this thesis have been published in the following articles:

1. Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. Equity of attention:
Amortizing individual fairness in rankings. In Proceedings of the 41st Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 405–414.

2. Asia J. Biega, Azin Ghazimatin, Hakan Ferhatosmanoglu, Krishna P. Gummadi, and
Gerhard Weikum. Learning to un-rank: Quantifying search exposure for users
in online communities. In Proceedings of the 2017 ACM Conference on Information
and Knowledge Management, CIKM 2017, Singapore, November 06-10, 2017, pages
267–276.

The efficient algorithm for generating exposure sets and the corresponding experiments
(Sections 3, 5.2 and 5.3 in this publication) are not contributions of this thesis.

3. Joanna Asia Biega, Krishna P. Gummadi, Ida Mele, Dragan Milchevski, Christos Try-
fonopoulos, and Gerhard Weikum. R-Susceptibility: An IR-centric approach
to assessing privacy risks for users in online communities. In Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016, pages 365–374.

4. Asia J. Biega, Rishiraj Saha Roy, and Gerhard Weikum. Privacy through solidarity:
A user-utility-preserving framework to counter profiling. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pages 675–684.

The experiments on applying the Mediator Account framework to the scenario of
recommender systems (Sections 5 and 7 in this publication) are excluded from this
dissertation.

1.6 Organization
The remainder of the thesis is organized as follows. Chapters 2 and 3 provide a background
on user privacy and algorithmic fairness. Chapter 4 describes our contributions related to
fairness in rankings. Chapter 5 describes our contributions related to sensitive search exposure.
Chapter 6 describes our contributions related to quantifying privacy risks from textual
data. Chapter 7 describes our contributions related to privacy-preserving personalization
for searchers. Finally, Appendices B and A provide additional details on the users studies
conducted in this thesis, which were omitted in the corresponding publications due to space
constraints.
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Background: User Privacy
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2.1 Preliminaries
This background chapter provides an overview of privacy notions and methods for achieving
them in various systems. We are concerned with the privacy of an individual user whose
data is collected by the system. The data may be created or generated by the user (as is the
case for social network postings or web browsing histories), or by others (as is the case for
medical databases with patient information collected by hospitals).

Types of user data. User data may consist of structured attributes as well as unstructured
text. Structured attributes may be binary (for instance, whether a user liked a certain item),
categorical (for instance, marital status), or numerical (for instance, user age). Textual data
may occur in the form of search queries, or social media postings. Certain attributes may
also encode connections between multiple users - for instance in the form of friendship edges
in social networks.

Privacy-sensitivity of data. Certain items in user data might be considered personally
identifiable information (PII). While determining what constitutes PII is generally context
specific, one might assume attributes such as a username or a social security number are
personally identifying. These attributes are often referred to as identifiers. Certain attributes
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constitute quasi-identifiers. These attributes are not PII on their own, but may uniquely
identify a user when combined with other quasi-identifiers. For instance, a given combination
of a surname, a birth date, and a zip code, might describe a unique individual.

We call certain attributes sensitive. This is the information a user would like to protect
in a given context – for instance, it might be undesirable to link diseases to patients, in
which case the attribute disease would be considered sensitive. Sensitive attributes do not
necessarily need to be explicitly present in the data - inferring the value of a sensitive
attribute using the available data would also be considered a privacy breach.

Data usage scenarios. User data might be sanitized by a service provider if they want
to make a public release (data publishing) or if they provide an interface for querying the
data by analysts. Users might want to protect their data from the service providers, in which
case sanitization is performed either by the user or a trusted third-party before the data
reaches the service provider.

2.2 Privacy risks and notions

2.2.1 Information leakage

Linkability. Linkability (or identity disclosure) is a risk of matching data to a real-
world individual who is the owner of the data or whom the data describes. While the
most straightforward way to prevent this breach is to remove any personally identifying
information, such protection is often not enough1 because of the possibility of matching
quasi-identifiers with external data sources. The protected data might contain sensitive
information with quasi-identifiers but without personally identifiable information. External
public data sources might contain personally identifiable information together with quasi-
identifiers, making it possible to mach anonymized records by quasi-identifier values. Such
a strategy was used to deanonymize medical records of the Governor of Massachusetts
using public employee records [Sweeney 2002b]. Moreover, research shows it is possible to
de-anonymize individuals from social network graph data by correlating anonymized graphs
with publicly available graphs [Narayanan and Shmatikov 2009], from browser fingerprints
constructed from browser settings and plugins, which are available to any website a user
visits [Eckersley 2010], or from movie rating data by correlating anonymized ratings with
ratings publicly available on the IMDB2 film website[Narayanan and Shmatikov 2008].

Attribute disclosure. Even if matching of an individual to a specific data record is not
possible, it might still be possible to learn the value of a sensitive attribute of a given
individual [Machanavajjhala et al. 2007]. Such a breach is called attribute disclosure. For
instance, imagine we know an individual with the quasi-identifier values of (66123, male,
07.09.1982) who has been hospitalized at an institution releasing patient records. Even
when we cannot uniquely link the person to a single row in the dataset, attribute disclosure

1https://en.wikipedia.org/wiki/AOL_search_data_leak
2htpps://imdb.com

https://en.wikipedia.org/wiki/AOL_search_data_leak
htpps://imdb.com
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will occur if each row the individual possibly maps to has the same value of the sensitive
attribute.

Attribute disclosure can also be understood as gaining additional information about the
value of a sensitive attribute from a dataset when compared to the prior knowledge [Li et al.
2007]. For instance, if an individual has a heart disease with the probability 0.6 according
to the dataset, while the prior probability in a given population for having a heart disease is
0.1, the adversary increases her certainty about the sensitive value even though she does
not learn the exact value.

Attribute inference. Privacy may also be violated when attributes and information
not directly observable or recorded in the data are inferred from the observable data of
multiple users using machine learning methods. While the two concepts are related, the main
conceptual difference between attribute inference and disclosure is that disclosure typically
refers to recovering the value of a sensitive attribute that is present in an anonymized
dataset, while inference refers to learning the attributes not present in the data based on
observations of attribute patterns in user populations.

Various types of attribute inference have been demonstrated in the literature. For instance,
it is possible to predict psychological and demographic traits from the items people like in
a social network such as Facebook [Kosinski et al. 2013], predict whether two accounts in
two different online communities belong to the same individual [Goga et al. 2015], predict a
user’s location from the tags they add to their online postings [Zhang et al. 2018], or predict
sensitive information (such as whether a person is on a vacation, driving drunk, or having a
certain disease) from the textual contents of their social media postings [Mao et al. 2011].

Classifiers based on stylometric techniques for text, such as the analysis of usage of
different words or syntactic and linguistic patterns, have been shown to enable authorship
inference [Abbasi and Chen 2008; Narayanan et al. 2012].

2.2.2 Profiling

Loss of privacy can also occur when a large amount of data is collected about a user, as
the entirety of such data (for instance, a search history spanning multiple years) may paint
a very intimate picture of a person’s life. The risk might be defined, for instance, as the
total amount of data collected [Singla et al. 2014; Biega et al. 2017b], or the total number
of topics present in a user profile [Biega et al. 2017b; Meng et al. 2016b]. Such detailed
data is usually collected to enable personalization [Biega et al. 2017b; Singla et al. 2014], or
targeted advertising [Yu et al. 2016; Meng et al. 2016b].

2.2.3 Exposure

Privacy breaches include inappropriate exposure of user data. Inappropriate exposure might
mean that data is accessible by unintended audience [Sandhu et al. 1996], either shortly
after data creation or long thereafter, when a user does not necessarily remember about
the data’s existence and exposure possibility [Mondal et al. 2016]. Moreover, access to data
might be made easier through various platform features. Examples include Facebook’s News
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Feed where updates to the content of user profiles are actively broadcast to other users, or
search engines, where access to user profiles by is enabled by matching of keyword queries
(see Chapter 5).

2.3 Achieving privacy

2.3.1 Limiting information leakage

K-anonymity. The success ratio of linkability based on quasi-identifiers depends on
how many individuals share unique combinations of values. This insight underlies the
anonymization technique called k-anonymity [Sweeney 2002b]. A dataset is k-anonymous
if each combination of quasi-identifier values appears at in the dataset at least k times.
The protection offered by this mechanism is that the probability of correctly mapping an
individual to a row in the database is lower than 1

k .
Means of preventing linkability include removal of any personally identifiable information,

or perturbation of data so as to satisfy the k-anonymity requirement [Sweeney 2002a; Jr.
and Agrawal 2005; LeFevre et al. 2005, 2006]. Such perturbations include generalization,
where values are replaced by sets of values (for instance, zip code 66123 might become
66 ∗ ∗∗), and suppression, where individual user records are fully removed from the data.

Alternative approaches include generation of synthetic datasets that satisfy privacy
criteria at the same time preserving patterns from the original data. This idea has been
explored in the context of preserving frequent itemsets while ensuring k-anonymity [Vreeken
et al. 2007], or preserving the distribution of attribute values, while adding controlled noise
to the values generated from these distributions [Howe et al. 2017].

L-diversity. While mitigating the threat of linkability, k-anonymity does not offer full pro-
tection against sensitive attribute disclosure. To prevent such attribute disclosure, Machanava-
jjhala et al. [2007] proposed the notion of l-diversity [Machanavajjhala et al. 2007], which
requires that within each equivalence class of rows defined by a given combination of quasi-
identifier values (that is, within each k-anonymous block), there exist at least l different
values of the sensitive attribute. As a result, even if an adversary is able to map an indi-
vidual to a given k-anonymous block unambiguously, she still faces uncertainty about the
individual’s sensitive data.

T-closeness. L-diversity does not protect against attribute disclosure in a probabilistic
sense. Aggregate statistics over the whole dataset provide the prior probability over the
values of sensitive attributes in the population. If the distribution within the equivalence class
an individual is mapped to is different from the prior distribution, the certainty about the
value of the sensitive attribute of the individual changes. To prevent this kind of disclosure,
the notion of t-closeness [Li et al. 2007] requires that the distributions of sensitive values
within anonymous blocks are within a distance of at most t from the global distribution in
the whole dataset. Distribution distance can be captured by metrics like the KL-divergence
or the Earth Mover’s distance.
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Differential privacy. The notion of differential privacy [Dwork 2008] requires that the
presence or absence of an individual’s data in a dataset does not significantly change the
output of a mechanism applied to the data. More precisely, a mechanism A satisfies ε-
differential privacy if the following inequality holds for any two neighboring datasets D1 and
D2 that differ by at most one row: P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S), for any set S that
the mechanism A may compute. Note that this requirement is imposed over a mechanism
applied to the data, and not over the data itself, and is studied mostly in scenarios where
an analyst uses a data querying interface.

For example, assume an analyst wants to learn from census data D how many people in
a given town have an income over $100k. Let us denote this query function as f , and the
mechanism A(D) = f(D). The presence of an individual u with an income over $100k in
the dataset will change this value by 1. If the answer of the system for the dataset without
the individual is n, then P (A(D) ∈ {n}) = 1 and P (A(D ∪ x) ∈ {n}) = 0, thus violating
the differential privacy requirement for any ε.

To satisfy the requirement of differential privacy, a system needs to add random noise
to a mechanism results. For count queries, is has been shown that the privacy requirement
can be satisfied by adding noise from the Laplace distribution with the scale parameter ∆f

ε ,
where ∆f = maxD1,D2 |f(D1) − f(D2)|, also called sensitivity, determines the maximum
difference in the value of f when applied to neighboring datasets D1, D2 [Dwork 2008].
In the aforementioned example, instead of returning A(D) = f(D), the system returns
A(D) = f(D) + Y , where Y ∼ Laplace(∆f

ε ). The scale of the noise that needs to be added
depends on the sensitivity of the function f (the higher the sensitivity, the bigger the scale
of the noise), as well as the privacy parameter ε (the lower the ε and thus the stricter the
privacy requirement, the bigger the scale of noise).

Because differential privacy prevents inference of an individual’s presence in the data, it
offers protection from both linkability and attribute disclosure.

Decreasing inference accuracy. In the context of sensitive attribute inference using
machine learning models, privacy loss is usually quantified as the accuracy of the applied
model – the more accurately a sensitive attribute can be predicted, the more user privacy is
at stake. Protections against inference attacks focus on perturbing the data to decrease the
accuracy of the predictions. For instance, Zheleva and Getoor [2009] studied how friendship
and group membership information influences the accuracy of sensitive attribute prediction
in social networks. Zhang et al. [2018] propose a method to select tags appended to a social
posting to prevent the inference of the posting user’s location. Decreasing inference accuracy
is also used to prevent authorship attribution. Solutions along these lines include stylistic
suggestions for the authors to decrease the uniqueness of their style [Kacmarcik and Gamon
2006; McDonald et al. 2012], or crowdsourcing text reformulations [Almishari et al. 2014].

2.3.2 Limiting profiling

Limiting data collection. To limit the total amount of data collected from users, Singla
et al. [2014] propose the notion of stochastic privacy. Stochastic privacy limits the probability
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that different pieces of user data will be stored to enable further personalized service, thus
effectively limiting the size of user profiles.

Obfuscating data. Profiling privacy might be protected by hiding real user interactions
within fake data. Such an approach is taken, for instance, in the TackMeNot browser
extension, which issues synthetic search queries on a user’s behalf [Howe and Nissenbaum
2009], Similarly, a number of approaches have been proposed to obfuscate the topical
interest of search users by issuing fake queries on topics not covered in a user’s real search
history [Pang et al. 2012; Wang and Ravishankar 2014]. Masood et al. [2018] propose a
profile obfuscation method, where sensitive user data is replaced by semantically similar
non-sensitive data.

Data grouping and splitting. An early idea of grouping user interactions was imple-
mented in the Crowds system, in which requests were passed on in a random walk over a
network of users before being passed on to a server [Reiter and Rubin 1998]. A procedure
like that results in requests of individuals being split across multiple identities. This thesis
pursues a related idea by proposing a Mediator Accounts framework (Chapter 7), where the
goal is to to split and merge search queries of different users such that the personalization
quality is minimally reduced. At the same time, we want to create synthetic profiles, which
do not resemble original user profiles. Instead of merging user profiles or interactions, it is
also possible to split them into smaller chunks. Such ideas have been investigated in the
context of personalized search, where search histories were divided into chunks with topically
related queries [Chen et al. 2011; Xu et al. 2007]. As a result, for instance, instead of seeing
an individual interested in programming, cooking, and sports, a search engine would see
three individuals, each interested in one of the three aforementioned topics.

Anti-tracking. Beyond service providers directly collecting data about their users, there
are third parties who track users when they browse the web. Such trackers collect information
about the websites users visit, thus learning about their topical interests over time. Such
data is then used to deliver targeted advertising to the users, a practice referred to as Online
Behavioral Advertising. Several protection mechanisms have been proposed to protect user
privacy in this context, either by requiring the website publishers to mediate between
users and trackers by adding noise to user data [Akkus et al. 2012], by designing targeting
architectures where user data is stored on a local device [Toubiana et al. 2010], by preventing
collection of unique user attributes by the trackers [Yu et al. 2016], or by allowing users to
select the information they share with the trackers, acknowledging that users might want to
receive personalized ads for certain topics [Meng et al. 2016b].

2.3.3 Limiting exposure

Limiting data audience. Early approaches to privacy revolved around limiting access
to data to pre-specified audience. Such access control lists (ACLs) were defined either by
specifying individuals or groups of individuals (role-based ACLs) [Sandhu et al. 1996]. Such
approaches might be too cumbersome and give little flexibility to users with hundreds of
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connections in online social networks. To overcome this limitation, a number of solutions
have been proposed to help users statically predefine ACLs based on the network structure
using community detection approaches [Mazzia et al. 2012], or by suggesting friends to share
the content with on the fly when adding new posts using machine learning approaches [Fang
and LeFevre 2010].

Limiting data lifetime. Even when exposure is desirable at the time uploading the
content, it might become undesirable when the content is re-discovered some time after
publication. During this time, a user might forget such content is present in her digital traces,
while her preferences and views change. An evolution like this is especially prominent when
a young adult enters the job market with a long history of teenage social media postings.
Motivated by such scenarios among others, Mondal et al. [2016] proposes an inactivity-based
content withdrawal mechanism where postings are automatically withdrawn after the initial
audience interest fades.

Exposure awareness. Apart from strict exposure control, it is important to help users be
aware of the exposure of their content, especially when it happens through complex and often
non-transparent mechanisms. A number of studies have motivated the need for exposure
support showing that users consistently underestimate the size of their content’s audience
[Bernstein et al. 2013], or that people have strong feelings regarding exposure (thousands of
Facebook users protested when the platform introduced the News Feed thinking their privacy
was breached when the updates to the content of their profiles were actively broadcast to
other users, even though the content was accessible to those same users upon a visit to
individual profiles) [Boyd 2008]. Service providers do realize that such support is a crucial
privacy awareness feature. For instance, Facebook allows its users to preview how their
profile looks like to other people via a functionality called View As. Several interface designs
were proposed to make users aware of the size of their content’s audience, including showing
a pair of eyes whose size is proportional to the size of the audience [Schlegel et al. 2011].

Arguably, in the context of search, the information on which keyword queries return a
user’s posts in a platform’s search engine results is equally important as the information on
who can see user personal content. The work presented in Chapter 5 contributes to the line
of work on exposure awareness in search.

2.4 Cost of privacy

Achieving privacy comes at the cost of utility loss. For instance, the goal of releasing
structured data is for people to be able to compute certain statistics and gain insights from
the data. When trying to achieve the requirements of k-anonymity, l-diversity, t-closeness,
or differential privacy, these computations become inaccurate when the attribute values
are generalized, when rows get suppressed, or when noise is added to the results of queries.
Generally, the higher the privacy, the lower the resulting utility of the data. Because there
can be a lot of different anonymizations satisfying a chosen privacy criterion, one usually
chooses the one which offers the highest utility. For models such as k-anonymity, l-diversity,
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or t-closeness, utility is measured using proxy measures such as the number of resulting
abstraction classes, the average number of rows in abstraction classes [LeFevre et al. 2005;
Machanavajjhala et al. 2007; Li et al. 2007], the accuracy of classifiers predicting a sensitive
attribute [Brickell and Shmatikov 2008], or the difference between the distributions of
sensitive attributes in the original and the sanitized datasets [Li and Li 2009].

Techniques for achieving differential privacy control the amount of noise added to the
data through the parameter ε. The lower the value of ε, the bigger the amount of noise one
needs to add to achieve ε-differential privacy. Thus, the higher the privacy, the lower the
utility of the data (that is, the accuracy of the mechanism results).

Utility loss caused by obfuscation of user profiles is often measured using various
personalization quality measures [Singla et al. 2014; Wang and Ravishankar 2014; Chen
et al. 2011; Zhu et al. 2010; Biega et al. 2017b].

2.5 Privacy in search systems

In the context of the main theme of this thesis, it is worth reiterating over the privacy
problems specific to search systems.

Obfuscating searcher profiles. One of the goals in privacy-preserving IR is that of
privacy-preserving search personalization. To this end, various approaches for obfuscating
user profiles with constraints on the personalization utility were proposed. Different types
of such obfuscation approaches include: removing parts of the logs [Singla et al. 2014],
generating fake search queries and mixing them with the user-issued search queries [Howe
and Nissenbaum 2009; Pang et al. 2012; Wang and Ravishankar 2014], splitting logs into
multiple logs [Chen et al. 2011; Xu et al. 2007], or grouping the logs of different users [Biega
et al. 2017b; Zhu et al. 2010].

Anonymizing search logs. If a service provider wants to release a query log, the log
needs to be sanitized to ensure anonymity to the searchers whose data is being made public.
A crucial step is the removal of any personally identifiable information. Assuming any query
which appears in the log infrequently can be personally identifying, [Adar 2007] proposed a
scheme where queries in the logs are masked until they appear in a certain number of user
profiles.

Stronger anonymization techniques apply differential privacy mechanisms over raw query
logs and publish the results returned by these mechanisms instead of the original log. For
example, Zhang and Yang [2017] proposes publishing of query sessions (small subsets of
user profiles encompassing sequences of queries issued within a short time frame to satisfy a
single information need) with differentially private session counts, while Zhang et al. [2016b]
propose a differentially private mechanism that results in publishing query counts without
user profiles. Götz et al. [2012] provides a summary of guarantees offered by query log
anonymization mechanisms whose goal is to publish frequent query log elements.
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Adversarial inference using search logs. Another line of work investigates various
adversarial attacks using search logs. For instance, Peddinti and Saxena [2010] and Gervais
et al. [2014] have demonstrated machine learning approaches that enable distinguishing real
and fake queries in obfuscated user search logs, while Jones et al. [2007] showed that it is
possible to infer demographic and location information from query histories.

Private information retrieval. A related theme in security research is that of private
information retrieval, where a user wants to retrieve an item from a database stored on a
server, without revealing to the server which item is being requested [Chor et al. 1995]. The
goal in this field is to design protocols better than the baseline approach where the server
sends a full copy of the database to the requester.

Sensitive search exposure. This thesis tackles a novel problem of sensitive search
exposure for search subjects. In Chapter 5 we propose a methodology for finding all the
sensitive queries that expose a subject in the top-k results of a given search system. In
Chapter 6 we show how sensitive exposure can serve as a tool for quantifying privacy risks
in textual data.

2.6 Selected other dimensions in privacy research

Sensitivity analysis. For textual data, automated privacy mechanisms should be able
to determine which content is sensitive. To this end, several approaches proposed the idea
that content is sensitive if people tend to create it anonymously. In this spirit, Correa et al.
[2015] showed that linguistic factors such as usage of the first person singular pronoun or
semantic factors such as the topics of money, work, emotions, and sexuality can be used to
train machine learning methods to distinguish anonymous and non-anonymous social media
posts. Peddinti et al. [2014] studied the differences between anonymous and non-anonymous
posts in the online question and answer community Quora, finding that beyond conventional
sensitive topics such as sex, health or religion, people often choose to post anonymously on
topics such as education and educational institutions, or the patent law.

Longitudinal privacy. Beyond the privacy threats stemming from occasional data release,
it is important to understand long-term effects of information disclosure. Mondal et al. [2016]
studied the content deletion behavior of Twitter users and proposed automatic methods to
control the longitudinal privacy by automatically hiding inactive content. Rizoiu et al. [2016]
studied the longitudinal privacy of Wikipedia editors measured as the prediction accuracy
of features such as gender, education or religion. The paper demonstrates that the privacy
of editors who become inactive and do not contribute any new data still decreases over time,
as the accuracy of predictors increases thanks to data contributed by other users. Eslami
et al. [2017] proposed a mechanism for perturbing information that stays in the system after
a user decides to close her account, so as to minimize the effect of privacy breaches over
data she has no control over.
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Human perceptions of privacy. Research in privacy is often guided by user perceptions
and privacy needs. To that end, researchers in the field of usable privacy perform user
studies and interviews to understand these preferences as well as misconceptions people have
about the way systems deal with user data. In the context of online identity management,
for instance, Leavitt [2015] has found that people who feel non-anonymous using their
primary identity on Reddit are more likely to create temporary throwaway accounts to post
content. In the context of targeted advertising, Ur et al. [2012] have found that users consider
such advertising techniques both useful and creepy, incorrectly believing that personally
identifiable information is collected as a part of the process. Following up on this study,
Agarwal et al. [2013] found that user concerns are context-dependent, and that users are
generally only concerned about topically embarrassing ads. Moreover, users do not generally
want to opt-out of targeted advertising, considering some of the personalized ads as useful.
These results highlight that users do not want to completely lose the utility of online services
to preserve their privacy.

Economics of privacy. One of the interesting lines of thought in privacy is that of
economics of privacy. For instance, data can be seen as a product users need to be remunerated
for. Li et al. [2014] have proposed a pricing mechanism where analysts pay for making queries
over a dataset, and the payments are distributed to the dataset users in proportion to the
contribution of their data to the query answer. Behavioral economics techniques have been
applied to study how much users value privacy or how they make data sharing decisions
[Acquisti 2009]. Acquisti et al. [2016] provide a broad literature survey in this area.
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Anti-discrimination laws have been introduced to account for the fact that certain
groups of people have been historically subordinated. Regulations specify attributes,
such as gender, race, or religion, along which it is illegal to discriminate in domains

including education, employment, credit, or housing. The society begins to realize that
digital systems can unfairly discriminate as well. The realization that seemingly objective
computer systems can be biased has led to a number of questions the research community
has sought to answer. How to define fairness mathematically? How to design mechanisms
that are fair? How to audit black-box systems to hold them accountable? What constitutes
undesired bias and how can it be measured?

3.1 Preliminaries

We investigate algorithmic fairness for individuals or groups of individuals defined by one of
the aforementioned protected attributes. Issues of fairness matter in tasks such as classification
or search, and applications that involve people as subjects or system users.

Classification and regression. Classification and regression methods are increasingly
used in finance to predict customer creditworthiness, in hiring to predict whether a candidate
is going to make a good employee, or in justice systems to predict whether a convict will
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reoffend on a parole. Because in each of such scenarios algorithmic decisions influence the
lives and opportunities of the subjects, fairness of these decisions has become a concern.

To illustrate most important fairness notions, we focus on binary classification. In this
setup, one of the classification outcomes is usually considered positive. Assume a classifier
is to make a hiring decision - whether to hire an individual or not. Each individual X is
represented using a feature vector ~x describing various characteristics the designer of the
classifier thought were important for the task, for instance, age, gender, highest degree
received, GPA score, etc. Values can be categorical or numerical. The goal is to train a
classifier to make binary hiring decisions D ∈ {0, 1} (hire or no hire). The classifier is trained
using data in the form of pairs ~x, y of feature vectors of past hires annotated with binary
ground-truth decisions y specifying whether individual X had good performance reviews
from her manager two years after being hired. The performance score is a proxy definition
for being a good employee and a ground for a positive hiring decision. A classifier learns
patterns from a collection of vectors ~x distinguishing people with positive and negative
ground-truth values. We further choose gender as the protected attribute and denote xG as
the value of the gender feature of individual X.

The setup for a regression task is similar to that of classification, the difference being
that we predict a real-valued target attribute. In the hiring context, we might want to
predict, for example, how many years a person is likely to stay at the company.

Search and recommendation. In many domains, search engines rank people (explicitly
or implicitly by ranking the content and products people produce). Since ranking posi-
tions in scenarios like this influence people’s real-world economic livelihood, issues of fair
representation in ranking have become a major concern.

In the hiring context, for example, employers might screen for potential employees using
search engines on hiring support platforms. As a response to a keyword query q issued
by an employer, such as machine learning engineer, the platform returns a ranked list of
candidates e1, ..., ek ordered by a relevance score r(q, ei) computed by a ranking algorithm.
The ranking method can be based on data statistics or employ machine learning techniques.
Machine learning approaches use training data with labels provided by expert annotators
(an annotator determines which user profiles are relevant to which queries), or implicitly
inferred from user click patterns. For example, a user is likely to click on profiles she deems
relevant to her query. Chuklin et al. [2015] provide a detailed overview of various click
models used to infer relevance.

A hiring platform might also proactively recommend potential employees to recruiters.
In such a context, a recommendation algorithm can be thought of as a search system
where the employer is a query. Recommendation strategies can recommend candidates to
employers based on candidate’s similarity to previous candidates the employer interacted
with (item-item recommendation), because the candidate interacted with other employers
similar to the given employer (user-user recommendation), or using a mix of both approaches
(collaborative filtering).
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3.2 Algorithmic fairness notions

3.2.1 Group fairness.

Notions of group fairness broadly aim at making sure that algorithms do not disproportion-
ately adversely impact members of the protected groups.

Demographic parity. The notion of demographic parity requires that P (D = 1|xG =
1) = P (D = 1|xG = 0). For example, in the context of job application classification with
the protected attribute gender, this requirement means that groups of people of different
genders have an equal chance of being accepted. Beyond demographic or statistical parity,
this notion has appeared in the literature under a variety of different names, including
avoiding disparate impact [Feldman et al. 2015], independence [Barocas et al. 2018], and
anti-classification [Corbett-Davies and Goel 2018].

For tasks other than classification, demographic parity is often understood as equal
representation in the results. For instance, clustering algorithms should make sure that
different groups are similarly represented in all the clusters [Chierichetti et al. 2017],
recommendation algorithms should make sure different groups are similarly represented in
recommendation sets [Mehrotra et al. 2018] or that group proportions in recommendation
sets should be similar to group proportions in input ratings [Ekstrand et al. 2018b], while
ranking algorithms should make sure groups are similarly represented in ranking prefixes
[Yang and Stoyanovich 2017; Celis et al. 2018; Zehlike et al. 2017; Singh and Joachims 2018].

Performance parity. Another category of group fairness definitions revolves around the
idea of equal error rates, thus requiring equal performance of an algorithm for different
groups of people. Since error can be captured using a variety of different metrics, various
papers have focused on satisfying different metric equalities. Notable examples include
equality of true positive rates also known as equality of opportunity [Hardt et al. 2016]:
P (D = 1|y = 1, xG = 1) = P (D = 1|y = 1, xG = 0); equality of both true positive and
false positive rates also known as equalized odds [Hardt et al. 2016]: P (D = 1|y = 1, xG =
1) = P (D = 1|y = 1, xG = 0) and P (D = 1|y = 0, xG = 1) = P (D = 1|y = 0, xG = 0);
equality of missclassification rates – including equality of false negative rates – also know
as lack of disparate mistreatment [Zafar et al. 2017]: P (D = 0|y = 1, xG = 1) = P (D =
0|y = 1, xG = 0); or equality of positive predictive values also known as calibration:
P (y = 1|D = 1, xG = 1) = P (y = 1|D = 1, xG = 0).

Fairness has also been studied as error parity for different groups in recommendations
[Ekstrand et al. 2018a; Yao and Huang 2017], and search (using measures of satisfaction for
searchers) [Mehrotra et al. 2017].

It has been shown that satisfying different mathematical notions of fairness simultaneously
is generally not feasible [Kleinberg et al. 2017b; Chouldechova 2017]. These results highlight
the importance of analyzing the context of a given application and choosing a fairness
definition best serving the cause.
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3.2.2 Individual fairness

Dwork et al. [2012] observed that satisfying the requirement of demographic parity might
be achieved by accepting qualified individuals from one group and random individuals from
another. Thus, satisfying certain notions of group fairness might mean degrading fairness on
an individual level. This observation has led to the notion of individual fairness which posits
that individuals similar with respect to the task at hand should have similar probabilities of
positive classification outcomes.

Definitions along these lines have also been investigated in other algorithmic scenarios.
For instance, Kearns et al. [2017] proposed a notion of individual fairness for the problem of
candidate set selection from diverse incomparable source sets. An example of such a problem
is choosing faculty interview candidates from a number of diverse research communities which
are not directly comparable to each other in terms of research metrics (for instance, citation
rates are different in different research communities). The proposed notion of meritocratic
fairness requires that less qualified candidates are probabilistically almost never preferred
over more qualified candidates when selecting the candidate subsets.

This thesis contributes to the individual fairness line of research by developing methods
for making rankings individually fair. Assuming search relevance can be used to determine
similarity of individuals with respect to the task, we propose a fairness notion where each
ranked individual receives the attention from searchers that is proportional to their relevance.
This contribution is presented in Chapter 4.

3.3 Achieving algorithmic fairness
To achieve algorithmic fairness, interventions can be made at different steps of the processing
pipeline. A broader overview of various approaches along these lines is provided by Friedler
et al. [2018].

Pre-processing methods. Pre-processing methods aim at compensating for biases in
the data which might contribute to algorithmic unfairness. Some of the approaches focus on
balancing the datasets. For instance, Feldman et al. [2015] modify the numerical attributes
in the data to equalize marginal distributions of these attributes conditioned on the sensitive
attributes. Hajian and Domingo-Ferrer [2013] propose modifying the values of attributes and
labels in a dataset to prevent mining of unfair association rules from the datasets [Pedreschi
et al. 2008]. Other approaches construct intermediary (lower-dimensional) representations of
the data so as to strip the information about sensitive attributes, while keeping the utility
of the modified data for the task at hand [Zemel et al. 2013; Lahoti et al. 2018].

In-processing methods. In-processing approaches try to prevent unfair outcomes by
modifying the algorithms. Interventions along these lines most commonly take the form of
regularizers reflecting certain soft constraints. When defining an optimization objective for
the algorithm training, beyond a component controlling the error, regularizers are introduced
to control certain structural properties of models. While primarily used to reduce model
complexity and prevent overfitting, regularizers can also capture unfairness of the model.



3.4. Accountability 25

Fairness regularization has been, for example, considered for classification and regression
[Berk et al. 2017; Kamishima et al. 2012], and recommendation [Yao and Huang 2017]. Zafar
et al. [2017] propose encoding fairness notions as additional constrains added on top of
accuracy optimization objectives.

Post-processing methods. Post-processing approaches modify the outputs of algorithms
to satisfy fairness criteria. For example, Fish et al. [2016] propose a method which shifts
decision boundaries of trained classifiers to achieve statistical parity, while ensuring a minimal
decrease in accuracy. Hardt et al. [2016] modify the decision score thresholds of a trained
model to balance the true positive rates of different groups. Kamiran et al. [2010] propose a
method for relabeling the nodes of decision tree classifiers to ensure demographic parity.

3.4 Accountability
Once fairness criteria for algorithms are specified, a question remains whether systems
actually adhere to such standards and how one can audit systems externally to hold them
accountable. Audit mechanisms have been proposed to examine whether protected features
influence the outcomes of algorithmic decisions in black-box systems [Adler et al. 2018].
Kilbertus et al. [2018] proposed a method based on encryption of sensitive attributes that
enables auditing machine learning models for absence of disparate impact without having the
users disclose the values of their sensitive attributes. Kroll et al. [2016] provide an overview
of computational techniques that could be applied for assuring compliance of algorithmic
outcomes with legal requirements, taking into account that transparency should be limited
by the business incentives of service providers.

3.5 Cost of fairness
Satisfying different algorithmic fairness requirements might lead to a decrease in the quality
and utility of the algorithmic outputs. This trade-off has been explored for all common
algorithmic tasks including classification [Hardt et al. 2016; Zafar et al. 2017]), regression
[Berk et al. 2017], and ranking [Zehlike et al. 2017; Singh and Joachims 2018; Biega et al.
2018]. Leonhardt et al. [2018] and Mehrotra et al. [2018] show how increasing the diversity
of groups represented in recommendation sets might lead to a decrease in the satisfaction
for recommendation consumers.

3.6 Sources of algorithmic unfairness
In search systems, implicit relevance information is often collected from click data. If
searchers exhibit bias towards certain groups or individuals, algorithms will learn to imitate
these biases in the displayed results. Researchers have uncovered that advertisements of
high-paying jobs are shown more often to men than women [Datta et al. 2015], or that
advertisements for criminal record checks are more often shown as a response to queries with
names commonly associated with African Americans [Sweeney 2013]. The roots of both of
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these phenomena can be traced to biased click behaviors of search engine users. Algorithmic
unfairness is not necessarily a result of unfair mechanisms, but also of various forms of data
and human biases.

Model biases. When translating complex real-world problems into computational tasks,
we necessarily need to make certain assumptions and simplifications. For instance, as pointed
out by Barocas and Selbst [2016], it is not straightforward to determine what creditworthiness
or a good employee exactly mean in terms of machine learning prediction variables. Moreover,
very often humans need to be described using simplistic low-dimensional representations, with
only selected features present. Some of the features, for instance, even when unproblematic
on the surface, might be strongly correlated with the protected attributes. Evaluation metrics
will furthermore determine which aspects models optimize for and which will be ignored.
Biases might also emerge from the mismatch between the modeling assumptions and the
reality of system use contexts. For example, a platform creator might assume that when a
recruiter likes a candidate profile on a hiring platform, she thinks the profile is relevant to
her search requirement. In reality, however, recruiters might use the feature to simply mark
profiles for further investigation. The development choices regarding the task abstraction,
features, target variables, and metrics, will influence the bias of the resulting models.

Data biases. Unfairness may stem from underrepresentation of certain populations in the
data. For instance, when ranking programming job candidates, more data may be available
about male programmers, leading to better system performance for male applications. Note
that such underrepresentation might be a result of biased sampling processes, or activity
and self-selection biases of platform users (for instance, the platform might be unpopular
with female programmers, or women might share less data with the platform on average).

Data might also contribute to algorithmic unfairness when it is re-purposed for a new
task. System developers working with such data might not understand the methods and
metrics used when collecting the data, or the technical and normative limitations of the
platform on which the data was generated. Gebru et al. [2018] propose a standardized
dataset description template which could help foster more conscious data reuse practices.
Olteanu et al. [2016] provide a detailed discussion of various data biases and limitations.

Human biases. Human biases may enter digital systems in various ways. Machine learning
algorithms might be trained on data encoding certain stereotypes – for instance, training
labels for the hiring decision task might be provided by annotators with strong gender bias,
or generated from historical training data of hiring decisions made when such gender bias
was a reflection of the societal reality.

Various cognitive biases influence the way people interact with information and interfaces.
For instance, the fact that people tend to scan information from the top down when
investigating ranked results leads to position bias, where users pay most of their attention to
items ranked high [Joachims et al. 2005]. Eickhoff [2018] has studied how human cognitive
biases might influence the results of crowdsourcing studies. Baeza-Yates [2018] discusses
further forms of user interaction bias.
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Caliskan et al. [2017] has demonstrated that human association biases (perceiving certain
semantic concepts as more related than others) are replicated in embeddings trained on
text corpora. While the goal of word embeddings is to capture such similarities, certain
associations are socially undesirable. For instance, Bolukbasi et al. [2016] show that word
embeddings associate men more than women with words related to programming. An
association of this kind would be problematic if the embeddings were used as a plug-in
component in downstream applications such as resume ranking.

Quantifying bias. A number of efforts have been directed towards measuring and auditing
systems for presence of undesired bias. These includes, for instance, empirical studies into
gender influencing ranks in ranked outputs in various human resource platforms [Chen et al.
2018], auditing biased practices of surge pricing in ride-hailing platforms [Chen et al. 2015],
frameworks for deconstructing input and output biases in search over political social media
postings [Kulshrestha et al. 2017], or auditing bias in political personalized search results
[Robertson et al. 2018].

Note that the biases discussed here differ from the notion of bias known in statistics, whereby
the expected value of a statistical parameter estimator differs from the true parameter
value. In particular, even if an estimator is unbiased in the statistical sense, the estimated
value might represent an undesirable social phenomenon. For instance, even if a certain
minority population underperforms in a school admission test, we might want to modify a
statistically unbiased predictor of the performance knowing that the worse performance of
the minority is a result of worse access to educational resources. Reversely, a statistically
biased performance predictor might not violate any societal fairness notions if, for instance,
it underestimates performance equally for everyone.

Friedman and Nissenbaum [1996]; Barocas and Selbst [2016]; Olteanu et al. [2016]; Baeza-
Yates [2018] provide comprehensive overviews of the sources of technical, human, and data
biases.

3.7 Fairness in search systems

In the context of the main theme of this thesis, it is worth reiterating over the fairness
problems specific to search systems. Work in this area has primarily focused on fairness for
the search subjects.

Fair representation through diversity. Zehlike et al. [2017] focused on fair represen-
tation of protected groups in ranking prefixes, and proposed a statistical fairness test for
determining whether a given ranking was generated according to a Bernoulli trial, as well
as a post-processing algorithm for reshuffling rankings to pass the fairness test. Celis et al.
[2018] study the complexity of the problem of fair representation of groups in rankings.



28 Chapter 3. Background: Algorithmic Fairness

Fair representation through exposure. Apart from the notions of diversity, fairness
based on equal exposure has been proposed in parallel in our work [Biega et al. 2018],
discussed in Chapter 4, and by Singh and Joachims [2018]. Singh and Joachims [2018] focus
on the notions of group fairness and develop a probabilistic mechanism guaranteeing ex-ante
group exposure fairness in expectation. Zehlike and Castillo [2018] follow up on this work
by incorporating group-fair exposure regularizers in learning to rank algorithms. The work
conducted in this thesis proposes a notion of individual fairness – where each ranked subject
should get the attention from searchers that is proportional to her relevance – is explicitly
amortized across a sequence of rankings for ex-post fairness.

Quantifying and detecting unfairness. Yang and Stoyanovich [2017] proposed mea-
sures to quantify bias in ranked outputs inspired by standard IR evaluation measures,
where instead of the relevance information one uses the protected category membership
information.

Wu et al. [2018] propose a methodology for analyzing the causality of error in ranked
outputs. To this end, the authors construct a directed graph where discrete user profile
attributes influence a synthetic score derived from the ranking position, and perform causality
analysis on the resulting graph.

A notion of nutritional label, wherein different quantitative statistics are presented to
the users, has been proposed both for Web documents returned as search results [Fuhr et al.
2017], as well as the rankings themselves [Yang et al. 2018].

Fair ranking quality. On the searchers’ side, fairness has been understood as error parity.
Mehrotra et al. [2017] proposed a measurement methodology to quantify different levels of
satisfaction from the search results for different demographic groups.

3.8 Selected other dimensions in algorithmic fairness
research

Human decision making. While the majority of work in the area of algorithmic fairness
focuses on machine learning algorithms that replace humans in decision making, some
authors have investigated how decision making can be enhanced with humans and automated
predictions working in concord [Kleinberg et al. 2017a; Valera et al. 2018].

Human perceptions. Grgic-Hlaca et al. [2018a] have studied human perceptions of
fairness with regard to the usage of certain features in machine learning algorithms. Beyond
fairness, researchers have sought to understand whether increased interpretability of machine
learning models increases the trust people have of these models [Poursabzi-Sangdeh et al.
2018].

Procedural fairness. While the majority of literature focuses on the fairness of outcomes,
a separate question is that of procedural fairness, that is, whether the model itself operates
in a fair way. Along these lines, Grgic-Hlaca et al. [2018b] have proposed to crowdsource
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opinions on whether the usage of certain features is fair in the context of criminal risk
prediction and designed a submodular optimization problem to minimize the unfairness of
feature use while preserving classifier accuracy.

Fair matching and resource division. Work on fairness in computational economics
includes designing incentives for two-sided economy producers to prevent discriminating
treatment of consumers [Kannan et al. 2017], or procedures for fair division of resources
[Abebe et al. 2017; Chakraborty et al. 2017]. Social and legal scientists have also investigated
problems arising from power asymmetries in two-sided economy platforms [Rosenblat and
Stark 2016; Calo and Rosenblat 2017].

Ethics of experimentation. Large scale experimentation involving humans, such as
A\B testing, raises a lot of ethical concerns. Bird et al. [2016] propose a number principles
the design of such experiments should follow, including informed consent from the users,
minimizing the potential harm done to the users while maximizing research benefits, and
fairly distributing the potential harm risks among the users.

Predictive policing. A number of articles point out the problems predictive policing
might lead to. For example, it has been shown that there might exist feedback loops leading
to increased police presence in historically over-policed neighborhoods [Lum and Isaac 2016;
Ensign et al. 2018].

Long-term effects of fair machine learning. Recent efforts have begun to focus on
the long-term impact of fairness constrains, investigating whether fairness interventions
proposed in the literature thus far might have undesired effects. For instance, enforcing
demographic parity in credit risk prediction might lead to a situation where members of
protected groups default more often [Liu et al. 2018].
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Rankings of people and items are at the heart of selection-making, match-making,
and recommender systems, ranging from employment sites to sharing economy
platforms. As ranking positions influence the amount of attention the ranked

subjects receive, biases in rankings can lead to unfair distribution of opportunities and
resources such as jobs or income.

This chapter proposes new measures and mechanisms to quantify and mitigate unfairness
from a bias inherent to all rankings, namely, the position bias which leads to disproportion-
ately less attention being paid to low-ranked subjects. Our approach differs from recent
fair ranking approaches in two important ways. First, existing works measure unfairness at
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the level of subject groups while our measures capture unfairness at the level of individual
subjects, and as such subsume group unfairness. Second, as no single ranking can achieve
individual attention fairness, we propose a novel mechanism that achieves amortized fairness,
where attention accumulated across a series of rankings is proportional to accumulated
relevance.

We formulate the challenge of achieving amortized individual fairness subject to con-
straints on ranking quality as an online optimization problem and show that it can be solved
as an integer linear program. Our experimental evaluation reveals that unfair attention
distribution in rankings can be substantial, and demonstrates that our method can improve
individual fairness while retaining high ranking quality.

4.1 Introduction

Motivation and Problem. Rankings of subjects like people, hotels, or songs are at the
heart of selection, matchmaking and recommender systems. Such systems are in use on a
variety of platforms that affect different aspects of life – from entertainment and dating all
the way to employment and income. Notable examples of platforms with a tangible impact
on people’s livelihood include two-sided sharing economy websites, such as Airbnb or Uber,
or human-resource matchmaking platforms, such as LinkedIn or TaskRabbit. The ongoing
migration to online markets and the growing dependence of many users on these platforms
in securing an income have spurred investigations into the issues of bias, discrimination and
fairness in the platforms’ mechanisms [Calo and Rosenblat 2017; Levy and Barocas 2017].

One aspect in particular has evaded scrutiny thus far – to be successful on these platforms,
ranked subjects need to gain the attention of searchers. Since exposure on the platform is
a prerequisite for attention, subjects have a strong desire to be highly ranked. However,
when inspecting ranked results, searchers are susceptible to position bias, which makes
them pay most of their attention to the top-ranked subjects. As a result, lower-ranked
subjects often receive disproportionately less attention than they deserve according to the
ranking relevance. Position bias has been studied in information retrieval in scenarios where
subjects are documents such as web pages [Craswell et al. 2008; Chuklin et al. 2015]. It has
been shown that top-ranked documents receive most clicks often irrespective of their actual
relevance [Joachims and Radlinski 2007].

Systemic correction for the bias becomes important when ranking positions potentially
translate to financial gains or losses. This is the case when ranking people on platforms
like LinkedIn or Uber, products on platforms like Amazon, or creative works on platforms
like Spotify. For example, cumulating the exposure on a subset of drivers in ride-hailing
platforms might lead to economic starvation of others, while low-ranked artists on music
platforms might not get their deserved chance of earning royalties.

Observing that attention is influenced by a human perception bias, while relevance is
not, uncovers a fundamental problem: there necessarily exists a discrepancy between the
attention that subjects receive at their respective ranks and their relevance in a given search
task. For example, attention could decrease geometrically, whereas relevance scores may
decrease linearly as the rank decreases. If a ranking is displayed unchanged to many searchers
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over time, the lower-ranked subjects might be systematically and repeatedly disadvantaged
in terms of the attention they receive.

Problem statement. A vast body of ranking models literature has focused on aligning
system relevance scores with the true relevance of ranked subjects, and in this work we
assume the two are proportional. What we focus on instead is the relation between relevance
and attention. Since relevance can be thought of as a proxy for worthiness in the context
of a given search task, the attention a subject receives from searchers should ideally be
proportional to her relevance. In economics and psychology, a similar idea of proportionality
exists under the name of equity [Walster et al. 1973] and is employed as a fairness principle
in the context of distributive justice [Greenberg 1987]. Thus, in this thesis, we make a
translational normative claim and argue for equity of attention in rankings.

Operationally, the problem we address in this thesis is to devise measures and mechanism
which ensure that, for all subjects in the system, the received attention approximately equals
the deserved attention, while preserving ranking quality. For a single ranking this goal is
infeasible, since attention is influenced by the position bias, while relevance is not. Therefore,
our approach looks at a series of rankings and aims at measures of amortized fairness.

State of the art and limitations. Fairness has become a major concern for decision-
making systems based on machine learning methods. Various notions of group fairness have
been investigated [Kamishima et al. 2012; Pedreschi et al. 2008; Feldman et al. 2015; Hardt
et al. 2016; Zafar et al. 2017], with the goal of making sure that protected attributes such
as gender or race do not influence algorithmic decisions. Fair classifiers are then trained to
maximize accuracy subject to group fairness constraints. These approaches, however, do not
distinguish between different subjects from within a group. The notion of individual fairness
[Dwork et al. 2012; Zemel et al. 2013; Kearns et al. 2017] aims at treating each individual
fairly by requiring that subjects who are similar to each other receive similar decision
outcomes. For instance, the concept of meritocratic fairness requires that less qualified
candidates are almost never preferred over more qualified ones when selecting candidates
from a set of diverse populations. Relevance-based rankings, where more relevant subjects
are ranked higher than less relevant ones, also satisfy meritocratic fairness. A stronger
fairness concept, however, is needed for rankings to be a means of distributive justice.

Prior work on fair rankings is scarce and includes approaches that perturb results to
guarantee various types of group fairness. This goal is achieved by techniques similar to
those for ranking result diversification [Celis et al. 2018; Yang and Stoyanovich 2017; Zehlike
et al. 2017], or by granting equal ranking exposure to groups [Singh and Joachims 2018].
Individual fairness is inherently beyond the scope of group-based perturbation.

Approach and contribution. Our approach in this thesis differs from the prior work
in two major ways. First, the measures introduced here capture fairness at the level of
individual subjects, and subsume group fairness as a special case. Second, as no single ranking
can guarantee fair attention to every subject, we devise a novel mechanism that ensures
amortized fairness, where attention is fairly distributed across a series of rankings.
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For an intuitive example, consider a ranking where all the relevance scores are almost
the same. Such tiny differences in relevance will push subjects apart in the display of the
results, leading to a considerable difference in the attention received from searchers. To
compensate for the position bias, we can reorder the subjects in consecutive rankings so
that everyone who is highly relevant is displayed at the top every now and then.

Our goal is not just to balance attention, but to keep it proportional to relevance for all
subjects while preserving ranking quality. To this end, we permute subjects in each ranking
so as to improve fairness subject to constraints on quality loss. We cast this approach to an
online optimization problem, formalizing it as an integer linear program (ILP). We moreover
devise filters to prune the combinatorial space of the ILP, which ensures that it can be
solved in an online system. Experiments with synthetic and real-life data demonstrate the
viability of our method.

Note that we assume that searchers are indifferent to the varying ordering in the ranking
except for the utility loss. In practice, searchers might be confused if they see very different
results to the same queries. While this thesis does not tackle this problem, possible solutions
might include incremental updates to ranking changes, or controlling that varying results to
a given query are shown to different searchers.

This chapter makes the following novel contributions:

• To the best of our knowledge, we are the first to formalize the problem of individual
equity-of-attention fairness in rankings, and define measures that capture the discrepancy
between the deserved and received attention.

• We propose online mechanisms for fairly amortizing attention over time in consecutive
rankings.

• We investigate the properties and behavior of the proposed mechanisms in experiments
with synthetic and real-world data.

4.2 Equity-of-attention fairness
We now formally define equity of attention accounting for position bias, which determines
how attention is distributed over the ranking positions. We consider a sequence of rankings
at different time points, by different criteria or on request of different users.

4.2.1 Notation

We use the following notation:

• u1, ..., un is a set of subjects ranked in a system,

• ρ1, ..., ρm is a sequence of rankings,

• rj
i is the [0..1]-normalized relevance score of subject ui in ranking ρj ,

• aj
i is the [0..1]-normalized attention value received by subject ui in ranking ρj ,

• A denotes the distribution of cumulated attention across subjects, that is, Ai =
∑m

j=1 a
j
i

for subject ui,
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• R denotes the distribution of cumulated relevance across subjects, that is, Ri =
∑m

j=1 r
j
i

for subject ui.

4.2.2 Defining equity of attention

Our fairness notion in this work is in the spirit of the individual fairness proposed by
Dwork et al. [2012], which requires that “similar individuals are treated similarly”, where
“similarity” between individuals is a metric capturing suitability for the task at hand. In the
context of rankings, we consider relevance to be a measure of subject suitability. Further, in
applications where rankings influence people’s economic livelihood, we can think of rankings
not as an end, but as a means of achieving distributive justice, that is, fair sharing of certain
real-world resources. In the context of rankings, we consider the attention of searchers to be
a resource to be distributed fairly.

There exist different types of distributive norms, one of them being equity. Equity encodes
the idea of proportionality of inputs and outputs [Walster et al. 1973], and might be employed
to account for "differences in effort, in productivity, or in contribution" [Yaari and Bar-Hillel
1984].

Building upon these ideas, we make a translational normative claim and propose a new
notion of individual fairness for rankings called equity of attention, which requires that
ranked subjects receive attention that is proportional to their worthiness in a given search
task. As a proxy for worthiness, we turn to the currently best available ground truth, that
is, the system-predicted relevance.

Definition 1 (Equity of Attention). A ranking offers equity of attention if each subject
receives attention proportional to its relevance:

ai1

ri1
= ai2

ri2
, ∀ui1, ui2. (4.1)

Note that this definition is unlikely to be satisfied in any single ranking, since the
relevance scores of subjects are determined by the data and the query, while the attention
paid to the subjects (in terms of views or clicks) is strongly influenced by position bias. The
effects of this mismatch will be aggravated if multiple subjects are similarly relevant, yet
obviously cannot occupy the same ranking position and receive similar attention.

To operationalize our definition in practice, we propose an alternative fairness definition
that requires attention to be distributed proportionally to relevance, when amortized over a
sequence of rankings.

Definition 2 (Equity of Amortized Attention). A sequence of rankings ρ1, ..., ρm offers
equity of amortized attention if each subject receives cumulative attention proportional to
her cumulative relevance, i.e.:∑m

l=1 a
l
i1∑m

l=1 r
l
i1

=
∑m

l=1 a
l
i2∑m

l=1 r
l
i2
, ∀ui1, ui2. (4.2)

Observe that this modified fairness definition allows us to permute individual rankings
so as to satisfy fairness requirements over time. The deficiency in the attention received
by a subject relative to her relevance in a given ranking instance can be compensated in a
subsequent ranking, where the subject is positioned higher relative to her relevance.
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4.2.3 Equality of attention

In certain scenarios, it may be desirable for subjects to receive the same amount of attention,
irrespective of their relevance. Such is the case when we suspect the ranking is biased and
cannot confidently correct for that bias, or when the subjects are not shown as an answer to
any query but need to be visually displayed in a ranked order (e.g., a list of candidates on an
informational website for an election). In such scenarios, the desired notion of fairness would
be equality of attention. We observe that this egalitarian version of fairness is a special case
of equity of attention, where the relevance distributions are uniform, i.e., ri1 = ri2 ∀ui1, ui2.
As equity of attention subsumes equality of attention, we do not explicitly discuss it further
in this thesis.

4.2.4 Relation to group fairness in rankings

To our knowledge, all prior works on fairness in rankings have focused on notions of group
fairness, which define fairness requirements over the collective treatment received by all
members of a demographic group like women or men. Our motivation for tackling fairness at
the individual level stems from the fact that position bias affects all individuals, independently
of their group membership. It is easy to see, however, that when equity of attention is
achieved for individuals, it will also be achieved at the group level: the cumulated attention
received by all members of a group will be proportional to their cumulated relevance.

Prior works on fairness in rankings [Celis et al. 2018; Yang and Stoyanovich 2017; Zehlike
et al. 2017] has mostly focused on diversification of the results. These approaches are geared
for one-time rankings, and, as any static model, will steadily accumulate equity-of-attention
unfairness over time. Since they were developed with a different goal in mind, they are not
directly comparable to our dynamic approach.

Parallel with our work, Singh and Joachims [2018] have explored similar ideas of how
position bias influences fairness of exposure. Their probabilistic formulations are possibly a
counterpart of our amortization ideas, and it will be interesting to see to what extent these
formulations are interchangeable. In line with other prior works on fairness in rankings and
different from our work, however, they focus on satisfying constraints on group rather than
individual fairness, and on notions of equality rather than equity.

4.3 Rankings with equity of attention

4.3.1 Measuring (un)fairness

To be able to optimize ranking fairness, we need to measure to what extent a sequence of
rankings ρ1, ..., ρm violates Definition 2. Since the proposed fairness criterion is equivalent
to the requirement that the empirical distributions A and R be equal, we can measure
unfairness as the distance between these two distributions. A variety of measures can be
applied here, including KL-divergence, or L1-norm distance. In this work, we measure
fairness using the latter:
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unfairness(ρ1, ..., ρm) =
n∑

i=1
|Ai −Ri| =

n∑
i=1

∣∣∣∣∣∣
m∑

j=1
aj

i −
m∑

j=1
rj

i

∣∣∣∣∣∣ . (4.3)

L1-norm is minimized with a value of 0 for distributions satisfying the fairness criterion
from Definition 2, and is thus useful as an optimization objective. However, since the measure
is cumulative and indifferent to the exact distribution of unfairness among individuals, other
measures could be developed to quantify unfairness in the system at any given point.

4.3.2 Measuring ranking quality

Permuting a ranking to satisfy fairness criteria can lead to a quality loss when less relevant
subjects get ranked higher than more relevant ones. We propose to quantify ranking quality
using measures that draw from IR evaluation. Traditionally, ranking models are evaluated
in comparison with ground-truth rankings based on human-given relevance labels. Here, we
are interested in quantifying the divergence from the original ranking. Thus, we consider the
original ranking ρ to be the ground-truth reference for evaluating the quality of a reordered
ranking ρ∗. We assume that the ground truth scores are the relevance scores returned by
the system, and that these scores reflect the best ordering of subjects. These considerations
lead to the following definitions.

Discounted cumulative gain (DCG) quantifies the quality of a ranking by summing the
relevance scores in consecutive positions with a logarithmic discount for the values at lower
positions. The measure thus puts an emphasis on having higher relevance scores at top
positions.

DCG@k(r) =
k∑

i=1

2r(i) − 1
log2(i+ 1) (4.4)

This value can be further normalized by the DCG score of a perfect ranking ordered by the
ground truth relevance scores. The normalized discounted cumulative gain (NDCG)-based
quality measure can be thus expressed as:

NDCG-quality@k(ρ, ρ∗) = DCG@k(ρ∗)
DCG@k(ρ) (4.5)

This measure is maximized with a value of 1 if the rankings do not differ or if swaps are
only made within ties (i.e., subjects with equal relevance). Other measures, like Kendall’s
Tau or appropriately defined MAP -quality, could be applied as well.

4.3.3 Optimizing fairness-quality tradeoffs

As discussed in the previous section, there is “no free lunch”: to improve fairness, we need
to perturb relevance-based rankings, which might lead to lower ranking quality. To address
the tradeoff, we can formulate two types of constrained optimization problems: one where
we minimize unfairness subject to constraints on quality (i.e., lower-bound the minimum
acceptable quality), and another where we maximize quality subject to constraints on
unfairness (i.e., upper-bound the maximum acceptable unfairness measure). In this thesis,
we focus on the former, since at the moment ranking quality measures are more interpretable,
and so are the constraints on quality.
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4.3.3.1 Offline optimization

Let ρ1, ..., ρm be a sequence of rankings where the subjects are ordered by the relevance
scores. These rankings induce zero quality loss. We wish to reorder them into ρ1∗, ..., ρm∗

so as to minimize the distance between the distributions A and R with constraints on
NDCG-quality loss in each ranking:

minimize
∑

i

|Ai −Ri|

subject to NDCG-quality@k(ρj , ρj∗) ≥ θ, j = 1, . . . ,m.
(4.6)

where Ai and Ri denote the cumulated attention and relevance scores that subject ui has
gained across all the m rankings.

Instead of thresholding the loss in each individual ranking, an alternative would be to
threshold the average loss over m rankings.

4.3.3.2 Online optimization

In practice, ranking amortization needs to be done in an online manner, one query at a time.
Without the knowledge of future query loads, the goal is then to reorder the current ranking
so as to minimize unfairness over the cumulative attention and relevance distributions in
rankings seen so far, subject to a constraint on the quality of the current ranking. Thus, in
the l-th ranking we want to :

minimize
∑

i

|Al−1
i + al

i − (Rl−1
i + rl

i)|

subject to NDCG-quality@k(ρl, ρl∗) ≥ θ
(4.7)

where Al−1
i and Rl−1

i denote the cumulated attention and relevance scores that subject ui

has gained up to and including ranking ρl−1.

4.3.4 An ILP-based fair ranking mechanism

4.3.4.1 ILP for online attention amortization

The optimization problem defined in Sec. 4.3.3.2 can be solved as an integer linear program
(ILP). Assume we are to rerank the l-th ranking in a series of rankings. We introduce n2

decision variables Xi,j which are set to 1 if subject ui is assigned to the ranking position j,
and set to 0 otherwise. At the time of reordering the l-th ranking, the following values are
constants:

• relevance scores for each subject ui in the current ranking: rl
i,

• attention values assigned to ranking positions: wj ,

• relevance scores accumulated up to (and excluding) the current ranking for each
subject: Rl−1

i ,

• attention values accumulated up to (and excluding) the current ranking for each
subject: Al−1

i ,
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• IDCG@k value computed over the current ranking ρl, which is used as a normalization
score for NDCG-quality@k.

For each subject ui, the accumulated attention and relevance are initialized as A0
i = 0

and R0
i = 0 for all ui.

The ILP is then defined as follows:

minimize
n∑

i=1

n∑
j=1
|Al−1

i + wj − (Rl−1
i + rl

i)| ·Xi,j

subject to
k∑

j=1

n∑
i=1

2rl
i − 1

log2(j + 1)Xi,j ≥ θ · IDCG@k

Xi,j ∈ {0, 1}, ∀i,j∑
i

Xi,j = 1, ∀j∑
j

Xi,j = 1, ∀i

(4.8)

The first constraint bounds the loss in ranking quality, in terms of the NDCG-quality
measure, by the multiplicative threshold 0 ≤ θ ≤ 1. The other constraints ensure that the
solution is a bijective mapping of subjects onto ranking positions. The terms Al−1

i +wj and
Rl−1

i + rl
i encode the updates of the cumulative attention and relevance, respectively, if and

only if ui is mapped to position j.
It is worth noting that:

• When θ = 1, we do not allow any quality loss. This, however, does not mean that the
ranking will remain unchanged. Subjects can be reordered within ties to minimize
unfairness.

• When θ = 0, any permutation of the ranking is allowed striving to minimize unfairness
in the current iteration.

4.3.4.2 ILP with candidate pre-filtering

The ILP operates on a huge combinatorial space, with the number of binary variables
being quadratic in the number of subjects. Real systems deal with millions of subjects, and
the optimization needs to be carried out each time a new ranking is requested. Such a
problem size is a bottleneck for ILP solvers, and in practice the optimization needs to use
approximation algorithms, such as LP relaxations or greedy-style heuristics. This is one of
the directions for further research.

To deal with the issue in this work, instead of reranking all subjects in each iteration,
we rerank only subjects from a prefiltered candidate set. Different strategies are possible
for selecting the candidate sets. On the one hand, prefiltering the top-ranked subjects by
relevance scores would let us satisfy the quality constraints, but may entail small fairness
gains, especially for near-uniform relevance distributions. On the other hand, prefiltering
based on the objective function might lead to situations where the ILP cannot find any
solution without violating the constraints.1

1Without prefiltering, the ILP always has at least one feasible solution (the original ranking).
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Our strategy thus is as follows. Assume we want to select a subject candidate subset
D of size t to be reranked, and we constrain the quality in Eq. 4.8 at rank k. Since the
attention weights wj are positive, the biggest contributors to the objective function are
the subjects with the smallest values of Ai − (Ri + ri). These are the subjects with the
highest deficit (negative value) of fair-share attention. We always select k subjects with the
highest relevance scores in rl, to make sure we satisfy the quality constraint, plus other
t− k subjects with the lowest Ai− (Ri + ri) values, who are most worthy of being promoted
to high ranks. As a result, when no feasible solution can be found by reranking the most
worthy subjects, the ILP will default to choosing the top-k candidates by relevance scores.

4.3.4.3 Extensions

Granularity. The presented model assumes that attention and relevance are aggregated
per ranked subject. It is straightforward to extend it to handle higher-level actors such as
product brands or Internet domains, by summing the relevance and attention scores over the
corresponding subjects. As a consequence of this modification, bigger organizations would
obtain higher exposure. Deciding whether this effect is fair is a policy issue.

Handling dynamics. In a real-world system, the size of the population will vary over
time, with new subjects joining and existing ones dropping out. Our model is capable of
handling this kind of dynamics, since new users starting with no deserved attention will be
positioned in between the users who got more than they deserved and those who got less.
Moreover, ranking quality constraints will prevent such users from being positioned too low
in rankings where they are highly relevant.

4.4 Experiments

4.4.1 Data

The datasets we use are either synthetically generated or derived from other publicly available
resources. They are freely available to other researchers.

4.4.1.1 Synthetic datasets

We create 3 synthetic datasets to analyze the performance of the model in a controlled
setup under different relevance distributions. We assume the following distribution shapes:
(i) uniform, where every user has the same relevance score, (ii) linear, where the scores
decrease linearly with the rank position, and (iii) exponential, where the scores decrease
exponentially with the rank position. Each dataset has 100 subjects.

4.4.1.2 Airbnb datasets

To analyze the model in a real-world scenario, we construct rankings based on Airbnb2

apartment listings from 3 cities located in different parts of the world: Boston, Geneva, and
2https://www.airbnb.com/

https://www.airbnb.com/
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Hong Kong. Airbnb is a two-sided sharing economy platform allowing people to offer their
free rooms or apartments for short-term rental. It is a prime example of a platform where
exposure and attention play a crucial role in the subjects’ financial success. The data we use
is freely available for research.3

Rankings are constructed using the attribute id as a subject identifier, and various review
ratings as the ranking criteria, with the rating scores serving as relevance scores. Such
crowd-sourced judgments serve as a good worthiness-of-attention proxy on this particular
platform, although one has to have in mind that rating distributions tend to be skewed
towards higher scores, which is confirmed by our experimental analysis.

For each of the 3 datasets, we run the amortization model on two types of ranking
sequences:

1. Single-query: We examine the amortization effects when a single ranking is repeated
multiple times. To construct the rankings, we use the values of the review_scores_rating
attribute, which corresponds to the overall quality of the listing.

2. Multi-query: We examine the behavior of the model when a sequence of rank-
ings, each with a different relevance distribution, is repeated multiple times. To
this end, for each city, we construct 7 rankings based on different rating attributes:
review_scores_rating,
review_scores_accuracy,
review_scores_cleanliness,
review_scores_checkin,
review_scores_communication,
review_scores_location,
and review_scores_value.

The datasets for Boston, Geneva, and Hong Kong contain 3944, 1728, and 4529 subjects,
respectively.

Note that, for the purpose of model performance evaluation, the queries themselves
become irrelevant once the relevance is computed. Since the values of the aforementioned
attributes serve as relevance scores, the queries are abstracted out.

4.4.1.3 StackExchange dataset

We create another dataset from a querylog and a document collection synthesized from
the StackExchange dump by Biega et al. [2017b], please refer to the original paper for
details. We choose a radom subset of users and order their queries by timestamps, creating
a workload of around 20K queries. We use Indri4 to retrieve 500 most relevant answers
for each query, and treat the author of the answer as the subject to be ranked. Using this
dataset helps us gain an insight into the performance of the method in core IR tasks and
with different sets of subjects ranked in each iteration.

3Downloaded from http://insideairbnb.com/
4https://www.lemurproject.org/indri/

http://insideairbnb.com/
https://www.lemurproject.org/indri/
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4.4.2 Position bias

Our model requires that we assign a weight to each ranking position, denoting the fraction
of the total attention the position gets. These weights will depend on the application and
platform, and may be estimated from historical click data. In this thesis, we study the
behavior of the equity-of-attention mechanism under generic models of attention distribution.
We focus on the following distributions:

1. Geometric: The weights of the positions are distributed geometrically with the
parameter p up to the position k, and are 0 for positions lower than k. Geometrically
distributed weights are a special case of the cascade model [Craswell et al. 2008], where
each subject has the same probability p of being clicked. Setting the weights of lower
positions to 0 is based on an assumption that low-ranked subjects are not inspected.

wj =

p(1− p)j−1 j ≤ k

0 j > k
(4.9)

2. Singular: The top-ranked subject receives all the attention. This is a special case of
the geometric attention model with parameters p = 1, k = 1. Studying this attention
model is motivated by systems such as Uber, which present only top-1 matches to the
searchers by default.

wj =

1 j = 1

0 j > 1
(4.10)

Before being passed on to the model, the weights are rescaled such that
∑

j wj = 1. Studying
the effects of position bias on individual fairness under more complex attention models is
future work.

4.4.3 Implementation and parameters

We implement the ILP-based amortization defined in Section 4.3.4 using the Gurobi software.5

Constraints are set to be satisfied up to a feasibility threshold of 1e− 7. We prefilter 100
candidates for reranking in each iteration, as described in Section 4.3.4.2.

In the singular attention model, since all the attention is assumed to go to the first
ranking position, the ILP constrains the NDCG-quality at rank k = 1. We construct the
geometric attention model with p = 0.5 and k = 5, and in this case the ILP constraints the
NDCG-quality at rank k = 5.

In the single-query mode, where a single ranking is repeated multiple times, we set the
number of iterations to 20K. In the multi-query mode, with a repeated sequence of different
rankings, we repeat the whole sequence 3K times, which leads to a total of 21K rankings.

Relevance scores in the framework need to be normalized to form a distribution. In this
work, we assume relevance is a direct proxy for worthiness and rescale the rating scores
linearly. Note, however, that if additional knowledge is available to the platform regarding

5http://www.gurobi.com/

http://www.gurobi.com/
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the correspondence between relevance and worthiness, other transformations can be applied
as well.

4.4.4 Mechanisms under comparison

We compare the performance of the ILP-based online mechanism against two baseline
heuristics.

1. Relevance: The first heuristic is to allow only relevance-based ranking, completely
disregarding fairness.

2. Objective: The second heuristics is an objective-driven ranking strategy, which orders
subjects by the increasing priority value: Ai−Ri−ri (see Sec. 4.3.4.2) for each ranking.
Since all position weights wj are positive, assigning highest weights to subjects with
the lowest preference value is in line with the minimization goal. This ranking strategy
aims at strong fairness amortization without any quality constraints, and is expected
to perform similarly to the ILP with θ = 0.

4.4.5 Data characteristics: relevance vs. attention

Figure 4.1 shows the relevance score distributions in the single-query Airbnb datasets for
Boston, Geneva, and Hong Kong. The seemingly flatter shape of the Boston and Hong Kong
distributions is the result of a bigger size of these datasets when compared to the Geneva
dataset, where each individual has, on average, a larger fraction of the total relevance. Overall,
the distributions have a shape which complements the uniform, linear, and exponential
shapes of distributions in the synthetic datasets.

Figure 4.2 presents an example strongly motivating our research. Namely, it compares the
distribution of relevance in the Geneva dataset with the distribution of attention according to
the geometric model with p = 0.5, where the weights closely follow the empirical observations
made in previous position bias studies [Joachims and Radlinski 2007]. Observe that the
relevance distribution plotted in green is the same as that in Figure 4.1. There is a huge
discrepancy between these two distributions, while, as argued in this thesis, they should
ideally be equal to ensure individual fairness. Similar discrepancy exists in the two other
Airbnb datasets.

4.4.6 Performance on synthetic data

Singular attention model. Figure 4.3 reveals a number of interesting properties of the
mechanism for the Uniform relevance distribution. We plot the iteration number on the
x-axis, and the value of the unfairness measure defined by Equation 4.3 on the y-axis. First,
since reshuffling does not lead to any quality loss when all the relevance scores are equal, all
the reshuffling methods perform equally well irrespective of θ. Their amortizing behavior
should be contrasted with the black line denoting the relevance baseline. Unfairness for
this method always increases linearly by a constant factor incurred by the single ranking.
Second, amortization methods periodically bring unfairness to 0. The minimum occurs every
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Figure 4.1: Relevance distributions in the Airbnb datasets.

Figure 4.2: Comparison of the attention and relevance distributions for the top-10 ranking
positions in the Geneva dataset. Note that the relevance distribution presented here is the
same as in Fig. 4.1. To satisfy equity-of-attention fairness, the two distributions would have
to be the same.
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n iterations, where n is the number of subjects in the dataset. Within the cycle, each subject
is placed in the top position (receiving all the attention) exactly once.

Figure 4.4 with the results for the Linear dataset, confirms another anticipated behavior.
With no ties in the relevance scores, it is not possible to improve fairness without incurring
quality loss. Thus, all methods with θ > 0 lead to higher unfairness when compared to the
Objective baseline, although the unfairness is still lower in ILP with θ < 0.8 than in the
Relevance baseline.

When the relevance scores decrease exponentially (Figure 4.5), the ILP is not able to
satisfy the quality constraint with any θ >= 0.5, and thus these rerankings become equivalent
to those of the Relevance heuristic.

Figure 4.3: Model performance on the synthetic Uniform dataset. Attention singular.

Figure 4.4: Model performance on the synthetic Linear dataset. Attention singular.
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Figure 4.5: Model performance on the synthetic Exponential dataset. Attention singular.

Figure 4.6: Model performance on the synthetic Uniform dataset. Attention geometric.
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Figure 4.7: Model performance on the synthetic Linear dataset. Attention geometric.

Figure 4.8: Model performance on the synthetic Exponential dataset. Attention geometric.
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Geometric attention model. As shown in Figures 4.6, 4.7, and 4.8, the periodicity
effect becomes less pronounced under the general geometric attention model. Figure 4.9
helps to understand this behavior by showing the unfairness values achieved by the Objective
heuristic with different values of the attention cut-off k (see Equation 4.9). With k = 1, the
model is equivalent to Singular. As we increase k, the distribution of the position weights
becomes smoother, smoothing also the periodicity of the unfairness values.

The very good performance of the ILP-based rerankings with any θ < 1 in Figure 4.8,
stems from the fact that the relevance and attention distributions are almost the same (the
only difference being that the scores in the relevance distribution are non-zero for more
positions). Our results show that in this case the ILP performs a reordering only every now
and then, when the subjects ranked lower than position 5 in the original ranking gather
enough deserved attention. This causes the unfairness to go up and down periodically.

4.4.7 Performance on Airbnb data

4.4.7.1 Single-query, singular attention

We first analyze the model performance on the Airbnb datasets where a single ranking is
repeated multiple times, and the attention model is set to singular. The results are shown
in Figures 4.10, 4.11, 4.12 for Boston, Geneva, and Hong Kong, respectively. As in the
analysis with the synthetic data, we plot the iteration number on the x-axis, and the value
of the unfairness measure defined by Equation 4.3 on the y-axis. There are a number of
observations:

• As noted before, the loss in the Relevance baseline (plotted in black) increases linearly
by the constant unfairness factor incurred by the single ranking.

Figure 4.9: Performance of the Objective heuristic on the synthetic Uniform dataset under
the geometric attention model with different attention cut-off points.
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• Relaxing the quality constraint by decreasing θ allows us to achieve lower unfairness
values in the corresponding ranking iterations.

• The Objective heuristic with no quality constraints and the ILP where θ = 0 are able
to amortize fairness over time well, with no significant growth of unfairness over time.

• The periodicity effect we observed on synthetic uniform data appears here as well.
This is due to the relative closeness of the relevance distributions in the Airbnb data
to the uniform distribution. Unfairness achieved by the amortizing methods is close to
0 every n iterations. The frequency of the minimum indeed corresponds to the size of
the respective datasets.

• In some methods unfairness starts to grow linearly after a certain number of iterations
(see, e.g., the blue curve in Figure 4.10). This is a side effect of the candidate prefiltering
heuristic we chose. When the ILP receives a filtered candidate set where no subjects
filtered based on the objective can be placed at the top of the ranking without violating
the quality constraint, the ILP defaults to placing the most relevant subjects at the top,
which causes the quality loss to be 0 and the unfairness growing linearly. This effect
persists until some of the more relevant subjects gather enough deserved attention
to be pre-selected - note the variability that occurs in the blue curve again starting
around the 17K-th iteration.

• For a number of iterations at the beginning (equal to the number of ties at the top of
the ranking), all the methods perform the same, irrespective of the quality constraints.
This is due to the fact that unfairness is minimized by reshuffling the most deserving
relevant subjects first, which does not incur any quality loss.

Figure 4.10: Model performance on the single-query Boston dataset. Attention singular.
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Figure 4.11: Model performance on the single-query Geneva dataset. Attention singular.

Figure 4.12: Model performance on the single-query Hong Kong dataset. Attention singular.
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Figure 4.13: Model performance on the multi-query Boston dataset. Attention singular.

Figure 4.14: Model performance on the multi-query Geneva dataset. Attention singular.
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4.4.7.2 Multi-query, singular attention

Our methods amortize fairness better (achieving lower unfairness) on the Airbnb multi-query
datasets (Figures 4.13, 4.14, and 4.15) when compared to the single-query datasets for
two reasons. First, the variability in subject relevance and ordering in different iterations
is a factor helpful in smoothing the deserved attention distributions over time. Second,
distributions of the rating attributes in the Airbnb datasets used to construct the rankings are
more uniform than the global rating score, and have more ties at the top of the ranking. These
relevance distribution characteristics enable methods with conservative quality constraints
(even the ILP with θ = 1) to perform very well.

4.4.7.3 Single-query, geometric attention

The general geometric attention distribution is closer to the relevance distributions in the
Airbnb datasets than the singular distribution is. As noted in the analysis with synthetic
data, the closeness of the two distributions helps amortize fairness at a lower quality loss.
We can observe a similar effect in Figure 4.16, with more ILP-based methods reaching the
performance of the Objective heuristic. Note, however, that the improved performance here
is also partly due to the fact that we constrain the quality at a higher rank when assuming
the geometric attention, which is easier to satisfy.

4.4.7.4 Unfairness vs. quality loss

The results presented so far show the performance of the ILP-based fairness amortization
under different quality thresholds. Since the thresholds bound the maximum quality loss
over all iterations, the actual loss in most cases might be lower. To investigate these effects,
we plot the actual NDCG-quality values of the rerankings done by different methods on
the Boston dataset under the Singular attention model in Figure 4.17. The results confirm
that the actual loss is often lower than the threshold enforced by the ILP. Observe that

Figure 4.15: Model performance on the multi-query Hong Kong dataset. Attention singular.
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NDCG-quality is 1 for a number of initial iterations in all the methods. This is where
reshuffling of the top ties happens. The quality starts decreasing as less relevant subjects
gather enough deserved attention, and periodically goes back to 1, when the top-relevant
subjects gain priority again. Similar conclusions regarding the absolute loss hold under the
general geometric attention model.

Note that without explicit control, the results with lower utility could be consistently
delivered to the same users, leading to unfairness in the search quality for searchers. Mitigating
this problem would require a two-sided fairness model for searched subjects and searchers.

Figure 4.16: Model performance on the single-query Boston dataset. Attention geometric.
Results are similar for the Geneva and Hong Kong datasets.

Figure 4.17: Actual values of ranking quality. Boston dataset, attention singular.
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4.4.8 Performance on StackExchange data

The relative trends in the performance of our method are the same here as in the results
for other datasets. One of the characteristics that distinguish the StackExchange dataset is
that each individual subject occurs in relatively few rankings. An observation that follows is
that longer amortization timeframe is necessary under such conditions - a subject obviously
needs to appear in a number of rankings so that the model can reposition them to fairly
distribute attention.

4.5 Related work
Fairness. The growing ubiquity of data-driven learning models in algorithmic decision-
making has recently boosted concerns about the issues of fairness and bias. The problem of
discrimination in data mining and machine learning has been studied for a number of years
[Pedreschi et al. 2008; Kamishima et al. 2012; Romei and Ruggieri 2014]. The goal there
is to analyze and counter data bias and unfair decisions that may lead to discrimination.
Much prior work has centered around various notions of group fairness: preserving certain
ratios of members of protected vs. unprotected groups in the decision making outcomes,
with the groups derived from discrimination-prone attributes like gender, race, nationality,
etc. [Feldman et al. 2015; Hardt et al. 2016]. For example, the criterion of statistical parity
requires that a classifier’s outcomes do not depend on the membership in the protected
group. State-of-the-art mechanisms for dealing with such group fairness requirements are to
solve constrained optimization, e.g. maximize prediction accuracy subject to certain bounds
on group membership in the output labels. This has led to classification models with fairness-
aware regularization (e.g., [Zafar et al. 2017]). Beyond the fairness of outcomes, researchers
have looked into the fairness of process in the decision-making systems [Grgic-Hlaca et al.
2018b].

Individual fairness [Dwork et al. 2012] requires that individual subjects who have similar
attributes should, with high probability, receive the same prediction outcomes. Literature
to this end has so far focused on classification and selection problems [Zemel et al. 2013;
Kearns et al. 2017].

Other lines of work investigate mechanisms for fair division of resources [Abebe et al.
2017], or how automated systems can assist humans in decision making [Kleinberg et al.
2017a].

Fairness in rankings. Prior work on fair rankings is scarce and recent. Some proposals
show how to incorporate various notions of group fairness into ranking quality measures
[Yang and Stoyanovich 2017]. There have been approaches that diversify the ranking results
in terms of presence of members of different groups in ranking prefixes, at the same time
keeping the ranking quality high [Zehlike et al. 2017]. This problem has also been studied
from a theoretical perspective with the results provided for the computational complexity of
the problem [Celis et al. 2018]. All of these approaches consider static rankings only, and all
focus on group fairness. Parallel with our work, Singh and Joachims [2018] have proposed
a notion of group fairness based on equality of exposure for demographic groups. While
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technically complementary and similar in spirit to our approach, this method is also geared
for a purpose different than individual fairness, and does not aim at binding attention to
relevance.

Bias in IR. The existence of position bias in rankings of search results has been revealed
by a number of eye-tracking and other empirical studies [Craswell et al. 2008; Dupret and
Piwowarski 2008; Guo et al. 2009]. Top-ranked answers have a much higher probability of
being viewed and clicked than those at lower ranks. The effect persist even if the elements at
different ranks are randomly permuted [Joachims and Radlinski 2007]. These observations
have led to a variety of click models ([Chuklin et al. 2015] provide a comprehensive survey),
and several methods for bias-aware re-ranking [Wang et al. 2016; Joachims et al. 2017].
However, position bias has been primarily studied in the context of document ranking and
no prior work has investigated the influence of the bias on the fairness of ranked results. A
large search engine has been investigated for presence of differential quality of results across
demographic groups [Mehrotra et al. 2017]. Similar studies have been carried out on other
kinds of tasks such as credit worthiness or recidivism prediction [Adler et al. 2018].

Relation to other models. Fairness dimension has been considered for job dispatching
at the OS level, for packet-level network flows [Ghodsi et al. 2012], for production planning
in factories [Ghodsi et al. 2011], and even for two-sided matchmaking in call centers [Armony
and Ward 2010]. Fairness understood as envy-freeness is also investigated in computational
advertising, including generalized second-price auctions [Edelman et al. 2007]. In the context
of rankings, a potential connection between fair rankings and fair queuing has recently been
suggested [Chakraborty et al. 2017].

4.6 Conclusion
This thesis argues for equity of attention – a new notion of fairness in rankings, which
requires that the attention ranked subjects receive from searchers is proportional to their
relevance. As this definition cannot be satisfied in a single ranking because of the position
bias, we propose to amortize fairness over time by reordering consecutive rankings, and
formulate a constrained optimization problem which achieves this goal.

Our experimental study using real-world data shows that the discrepancy between the
attention received from searchers and the deserved attention can be substantial, and that
many subjects have equal relevance scores. These observations suggest that improving equity
of attention is crucial and can often be done without sacrificing much quality in the rankings.
Incorporating such fairness mechanisms is especially important on sharing economy or
two-sided market platforms where rankings influence people’s economic livelihood, and our
work addresses this gap.

Equity of attention opens a number of interesting directions for future work, including
calibration of ranker scores in economically-themed applications, all the way down the IR
stack to properly training judges to provide relevance labels with fairness in mind.
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Search engines in online communities such as Twitter or Facebook not only return
matching posts, but also provide links to the profiles of the authors. Thus, when a
user appears in the top-k results for a sensitive keyword query, she becomes widely

exposed in a sensitive context. The effects of such exposure can result in a serious privacy
violation, ranging from embarrassment all the way to becoming a victim of organizational
discrimination.

In this chapter, we propose the first model for quantifying search exposure on the service
provider side, casting it into a reverse k-nearest-neighbor problem. Moreover, since a single
user can be exposed by a large number of queries, we also devise a learning-to-rank method
for identifying the most critical queries and thus making the warnings user-friendly. We
develop efficient algorithms, and present experiments with a large number of user profiles
from Twitter that demonstrate the practical viability and effectiveness of our framework.
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5.1 Introduction

Motivation. A query search engine in online communities, such as Twitter or Facebook,
not only returns matching posts, but also identifies the users who have written the posts.
This search exposure risk is particularly pronounced when a user’s post appears in the top-k
results for a sensitive keyword query.

Note that exposure is different from just having contents visible within a community.
When Facebook introduced the News Feed feature, a lot of users responded with outrage.
They felt their privacy was being violated, even though the new feature only meant that
newly generated content would be broadcasted to people who would have access to that
content anyway [Boyd 2008]. Analogously, in the context of search systems, while a user
may be fine with posting about health problems, controversial political issues or using
swearwords, she may feel very uncomfortable with the posts being returned as top-ranked
results. Content found this way could be used, for example, in stories written by journalists
or bloggers, and attract uninvited attention to the user’s account. Beyond topically sensitive
queries, there are also risks regarding search exposure by unique strings. An adversary could
search for people posting urls of sensitive domains, such as pirate websites, or certain price
tokens, such as $1K. An adversary with a list of e-mails could issue these to find answers to
security questions necessary to reset passwords. An adversary with a list of generated credit
card numbers could issue these as queries to find other personal information necessary for
credit card transactions.

State of the art and limitations. Despite the existence of such threats, to the best of
our knowledge, there is no support for users to find out about their search exposure risks.
The only way would be to try out all possible queries and inspect their top-k results, yet
this is all but practical. The service providers – search engines or social network platforms –
do not provide such support at all.

Work in the broad area of exposure has been tangibly motivated by a study showing the
discrepancy between the expected and actual audience of user-generated content [Bernstein
et al. 2013]. Exposure has been addressed in other contexts so far, including information
exposure among friends in social networks [Mondal et al. 2014], location exposure [Shokri
et al. 2011], longitudinal information exposure [Mondal et al. 2016], controlled information
sharing [Schlegel et al. 2011], or exposure with respect to sensitive topics [Biega et al. 2016].
The importance of exposure control has led service providers to introduce features such as
Facebook’s View As, which informs a user how her profile appears to other people. However,
this does not quantify the exposure, and the problem of search exposure in particular has
been disregarded completely.

Problem and challenges. To the best of our knowledge, this dissertation is the first to
address the problem of modeling, analyzing and quantifying search exposure risks. As the
risk is most significant when a user is spotted in the top-k results of a query, our goal is
to identify these top-k exposing queries for each user. Such information can then be used
to guide the user, for example, in deleting posts or restricting their visibility. In an online
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setting, a tool based on our model could even alert the user about the exposure before
submitting a post.
The search exposure problem poses a number of challenges:

• Efficiency: A user could possibly be found by millions of distinct queries. An algorithm
to identify the critical queries thus faces a huge scalability and efficiency problem.

• Dynamics: With the high rate of new online contents, the critical queries cannot
simply be computed offline from a query log. The exposure of users keeps continuously
shifting.

• Usability: Showing all queries for which a user appears in the top-k results would in
many cases flood the user with millions of irrelevant or small-risk queries and miss
the point of guiding the user. Thus, it is crucial that the queries are ranked by an
informative measure of, possibly user-specific, sensitivity.

An interesting thing to note is that from the perspective of a user, reducing search
exposure can be seen as a problem of “inverse search engine optimization”, inverse SEO for
short. SEO aims to push a user to the top-ranked results for certain queries. Here, the goal
is the opposite – the users would like to be moved to the low-ranked tail of answers, or even
completely removed from the search results of particularly sensitive queries.

Approach and contributions. We model search exposure as a problem of reverse search
– instead of starting with a query and finding top-k documents relevant to the query, we
start with a document and want to find all the queries that return the document in the
top-k results. If we then think of keyword search with answer ranking as the problem of
finding the top-k nearest-neighbor posts according to a given similarity function, search
exposure becomes a reverse k-nearest-neighbor problem (RkNN).

To assist a user in understanding her search exposure risks, we devise an algorithm for
ranking the queries in the user’s RkNN set, which potentially contains hundreds of queries.
To this end, we combine informative features ranging from topical sensitivity (e.g., usually
higher for queries about health problems than for those about movies), through query
selectivity and entropy (e.g., higher for queries containing birth dates, or social security
numbers), to user surprisal (e.g., high for queries matching a post about a user’s children in
an otherwise professional profile). The salient contributions of this chapter are:

• A model of the search exposure problem;

• A learning to rank method with informative features for ranking the queries in the
exposure sets according to a new notion of search exposure relevance;

• An experimental study with a large set of Twitter profiles, providing insights on the
exposure sets and the effectiveness of our query ranking methods.

5.2 Problem statement
Preliminaries. Assume we have a set of users U and a set of documents D posted by the
users. We denote the fact that a post d is written by the user u by d ∈ u. The profile of
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each user is defined as the set of all documents she has posted in a community.

Search exposure. The problem of search exposure of user u can be formalized as find-
ing all the reverse k-nearest neighbors of u, i.e, the set of all the queries for which any of
the posts of u comes among the top-k results. We call the sets of such queries as exposure sets.

Generation of exposure sets. Before defining the exposure sets of all users, we first
define RkNNs(d) for each document d as follows:

RkNNs(d) = {(q, r)|q ∈ Q ∧ d is the rth NN of q ∧ r ≤ k} (5.1)

where Q is the set of all queries and r is the rank of d for the query q (r = rank(q, d)).
According to Emrich et al., the above equation is equivalent to the definition of a bichromatic
RkNN [Emrich et al. 2015].

Accordingly, we define the exposure set of each user as the union of the exposure sets of
all the documents in her profile. We denote the exposure set of the user u by RkNNs(u)
which is defined as follows:

RkNNs(u) = {(d, q, r)|(q, r) ∈ RkNNs(d) ∧ d ∈ u} (5.2)

An efficient algorithm for generating exposure sets developed by Biega et al. [2017a] is
not a contribution of this thesis.

Ranking of queries in exposure sets. Exposure sets of certain users might be big and
dominated by rare, non-informative, or non-critical queries. On the other hand, exposure
by certain sensitive queries might leave the user uncomfortable. Therefore, to make the
exposure sets user-friendly, we want to rank the triples in RkNNs(u) such that the queries
the users would not want to be searched by appear at the top. This defines the notion of
relevance in our ranking problem, termed search exposure relevance. We discuss the exposure
set ranking methods and our notion of relevance in Sec. 5.4.

5.3 Generating exposure sets
Biega et al. [2017a] develop an efficient algorithm for computing exposure sets defined by
Equation 5.2 under the assumption that the search engine uses a ranking mechanism based
on language models. This algorithm is not a contribution of this thesis. Instead, to present
the further contributions of this chapter, we assume we have the exposure sets (Equation 5.2)
computed for all the users in a system. Since considering all possible queries makes the
problem intractable, we similarly limit the considered queries to: (i) unigram and bigram
queries, (ii) and only those queries for which there exists at least one document in the
underlying collection containing all the query terms.

Note that such exposure sets can be generated by the algorithm proposed by Biega et al.
[2017a], or in a brute-force manner, by first computing top-k rankings for all considered
queries and then re-aggregating the results.
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aim oshtitsbaj, asleep oshtitsbaj, http://ra*.com/teh_ba splash,
mac vanilla, suck wake, mood sick

emma sun, watch xxxxxx, forget toast, @jeff* fall,
heavyweight ladder, omg tan, alcohol nice

blown death, comin lake, parilla wait, bathroom wanna,
crush hannah, friend lord, record woman

Table 5.1: Example queries from unprocessed exposure sets.

5.4 Ranking of queries in exposure sets

Generating the exposure sets is not enough for the results to be presentable to end users for
two reasons. First of all, for many users the size of their RkNN set is simply too big for
easy consumption. Our experiments on a sample of 50K user profiles from Twitter later
confirm this – even when only unigram and bigram queries are considered, more than 35K
users are exposed by more than 100 queries, with some users exposed by millions. Figure 5.1
in the upcoming experimental section of this chapter shows the distribution of exposure set
size for users from the sample.

Moreover, since we do not a priori exclude queries such as infrequent or numerical tokens
most RkNN sets will end up dominated by garbage queries. Leaving such queries in during
the generation phase is a design choice motivated by the ’worst case scenario’ principle
that often guides privacy and security research. While most users will find these queries
uninformative, for some people it might be important to know they are searchable by certain
URLs (e.g., when the domain is known to contain sensitive content) or numbers (e.g., their
year of birth or the prices of products they buy). Table 5.1 shows examples of the top queries
in the raw exposure sets where queries are ordered by the rank position of the corresponding
user post. These examples illustrate the need for ranking the queries before presentation to
end users – raw sets are uninformative when mostly garbage queries are shown to the users
first.

5.4.1 Learning to rank the exposing queries

Recall the search exposure sets defined by Eq. 5.2. We want to rank the triples within these
sets according to search exposure relevance, i.e., such that the queries the users would not
want to be searched by appear at the top. The traditional IR learning to rank setup, in
which the learned function orders the documents by relevance to queries, is replaced by one
where we rank the queries according to relevance to users.

Each user-document-query triple can be represented as a feature vector Φ(u, d, q). For each
user, together with the relevance score annotations, these form partial rankings determining
pairwise relevance constraints between the data points (e.g., for a user u, an exposing query
q1 matching a document d1 should be ranked higher than the query q2 matching a document
d2.) We want to learn a ranking function that minimizes a loss measure over these partial
training rankings. For example, when learning to rank using SVMrank [Joachims 2006], it
is the number of violated pairwise constraints that is minimized, which implicitly leads to

http://ra*.com/teh_ba
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maximization of Kendall’s τ between the golden and learned rankings.
We describe the features and relevance scores we used to learn the ranking function in

the following two sections.

5.4.2 Features

5.4.2.1 Semantic features

The meaning of words plays an important role in determining criticality of search exposure.
In a similar context, user studies have shown topical sensitivity to be useful in the context
of privacy risk quantification from text [Biega et al. 2016]. To capture the coarse-grained
semantics of the queries, we annotate them with categories from the LIWC dictionaries
[Tausczik and Pennebaker 2010]. LIWC categorizes words into 80 linguistically and psycho-
logically meaningful categories such as positive emotion (love, nice, sweet), affective processes
(happy, cry, abandon), swear words (damn, piss, fuck), anxiety (worried, fearful, nervous),
or sexual (horny, love, incest). We create one binary feature based on each category, with a
value of 1 if any of the query words matches any of the words from the category.

5.4.2.2 Uniqueness of queries

While any query generated from a community’s text contents search-exposes some of its
members, from the perspective of a single user, these are the rare tokens that are more likely
to lead to exposure. While a considerable portion of rare queries are simply meaningless
noise, it is possible that there are meaningful infrequent tokens with the potential to violate
privacy. Recall some of our motivating examples where an adversary searches for information
associated with a given sensitive domain, or an e-mail address.

We propose two features to capture how rare a query is: query selectivity and query
entropy. We define the query selectivity as the number of documents matching the query
exactly:

selectivity(q) = |{d : q ∈ d}| (5.3)

This measure will be low for queries which appear infrequently.
Another aspect of a query being unique is how skewed the distribution of the relevance

scores is. We capture this by measuring the entropy over the distribution of ranking scores
of the top-k returned results. Let R be the distribution of the relevance scores of the top-k
results. We measure the entropy of the query as:

entropy(q) = H(R), where R(i) = score(q, di)∑k
j score(q, dj)

(5.4)

Note that these measures are not dependent on a given user, but are dependent on
the community as a whole, i.e., the relative rankings of queries in different communities
might differ. For instance, while the query Lyme borreliosis might be an infrequent query on
Twitter, it could be more popular in a medical Q&A forum.
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5.4.2.3 User surprisal

The lexical context of a user might also matter when determining the criticality of a query.
Imagine a user with a Twitter profile where she posts mostly professional content. It would
not be surprising, and perhaps even desirable, that the user’s posts are returned as top
results to the queries from that professional domain. However, if it turns out that the user
profile comes up at the top only to the query funny cats that matches that single post the
user has ever made outside of the professional domain, this might be both unexpected and
undesirable.

We propose to capture this intuition using surprisal, which is measured by reversing the
probability of the query being generated from a user’s vocabulary distribution estimated
from the posts:

surprisal(q, u) = log

(
1

P (q|u)

)
= log

(
1∏

w∈q P (w|u)

)
(5.5)

To account for the sparsity of user profiles, we compute these probabilities using Dirichlet
smoothing.

5.4.2.4 Document surprisal

Even though these are the queries that are ranked, the users might not want to be matched
to a non-critical query when it exposes a critical post. Similarly to surprisal of queries, we
define the surprisal of posts that are matched by the exposing queries by replacing q by d in
Eq. 5.5.

5.4.2.5 RkNN features

Two traditional methods for ranking the reverse nearest neighbors by relevance to the user
are the proximity of the reverse neighbor to the user and the rank of the reverse neighbor.
While not likely to be useful when the relevance is defined as criticality, we include these
features for comparison. We measure proximity using the probability of generating the query
from the posting history of u:

proximity(q, u) = log (P (q|u)) (5.6)

Let du be the post of a user u that is returned as an answer to query q at position rank(q, du):

rankposition(q, u) = rank(q, du) (5.7)

5.4.2.6 Syntactic features

We also introduce a number of binary post-dependent features that characterize emotional
display or content the users might not want to be exposed by through search. These include:

• has_url (set to 1 if the post contains a URL),

• has_at_mention (set to 1 if the post mentions another user),
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• has_hashtag (set to 1 of the query contains a hashtag).

• has_emoticon (set to 1 if the post contains an emoticon),

• has_repeated_punctuation (set to 1 is any token in the post ends with a double
exclamation mark, double question mark, or an ellipsis),

• has_repeated_vowels (set to 1 if any token in a post contains a vowel repeated at least
three times in a row),

• has_laughter (set to 1 if any token contains a substring like haha, with different
vowels).

5.4.3 Relevance

Search exposure relevance differs in many ways from the topical relevance of traditional
IR tasks. A query might be relevant not only because it’s topically sensitive, but also
because it could embarrass, offend, or otherwise violate the privacy of the exposed person.
The subjective nature of such judgments makes the manual collection of relevance at scale
an extremely time-consuming task, especially if done by external evaluators. To decide
which queries would be relevant, a judge would have to put themselves in the shoes of
the evaluated user, imagine who that person is based on the contents of the profile, and
decide which queries would concern her. Moreover, a judge would have to come up with
likely threat scenarios. It is a non-trivial task to prime the judges regarding these issues
without biasing them. With all these considerations, we derive implicit relevance scores from
other user-generated signals that indicate reluctance to be associated with a given content.
Implicit relevance signals, especially in the form of clickthrough patterns, are commonly
used in traditional retrieval tasks [Carterette and Jones 2007]. The remainder of this section
presents our method for synthesizing the search exposure relevance scores.

User score. If a user deletes a post, it is a signal she does not want to be associated with
its content. Thus, a query matching a post that got deleted after publication receives a user
score of 1, whereas a query matching a non-deleted post receives a user score of 0. While a
service provider quantifying exposure would have a direct access to this information, there
are also ways for collecting it outside of the system [Mondal et al. 2016]. We describe our
collection method in more detail in the experimental section.

Community score. The deletion information is a noisy signal, however, as users delete
posts for a variety of reasons, including language or double posting errors. We want to sanitize
these scores using stronger, community-wide signals that encode the differences in language
distributions in anonymous and non-anonymous communities. These linguistic differences
have been observed, for instance, when comparing posts from Twitter and Whisper (an
anonymous microposting platform) [Correa et al. 2015]. Having estimated the vocabulary
distributions in an anonymous (Panon) and a non-anonymous (Pnon−anon) community, we
treat the relative probability of a query being generated from these distributions as a
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community-wide signal that users do not want to be associated with the keywords. More
precisely, we set the community score of a query to:

community_score(q) = Panon(q)
Pnon−anon(q) =

∏
w∈q

Panon(w)
Pnon−anon(w) (5.8)

Golden ranking. Finally, we derive the relevance as a linear combination of both scores:

score(q) = α · user_score(q) + (1− α) · community_score(q) (5.9)

Combining both scores allows us to discount the relevance of noisy queries that match
deleted posts, as well as add relevance to sensitive queries matching posts that did not get
deleted, as the user perhaps did not have any privacy concerns in mind.

5.5 Experiments
In this section, we discuss our insights into the search exposure problem through evaluation
of the ranking methods, as well as an analysis of user perceptions regarding exposing queries
collected in an experiment on Amazon Mechanical Turk.

5.5.1 Dataset

For our experiments, we use a sample of Twitter profiles from the longitudinal exposure
study by Mondal et al. [2016]. It consists of 51,550 user profiles with a total of about 5.5
million tweets posted over the year 2009.

5.5.2 RkNN generation

The experiments on RkNN Generation reported by Biega et al. [2017a] are not a part of this
thesis. However, we use the exposure sets the authors generated as an input for the ranking
algorithm experiments presented in this thesis. We thus report on the data preparation
techniques applied before generating the exposure sets. The cleaning included stop words
removal, lemmatization and stemming, resulting in around 2 millions unique tokens. The
query filtering strategy described in Section 5.3 resulted in 45 million queries considered for
exposure sets.

Figure 5.1 shows the distribution of the size of exposure sets of the users in the dataset
for different values of k. We assume k = 10 for the experiments in this chapter.

5.5.3 Query ranking in exposure sets

5.5.3.1 Exposure sets cleaning

For the evaluation results to be meaningful, we excluded the following queries from the
exposure sets: queries with tokens shorter than 3 letters, queries for which none of the tokens
is an English word, queries with numerical tokens, urls, and references to other accounts.
We also excluded users whose posts are primarily written in a language other than English.
While all of these queries could be search exposure relevant in certain contexts, it is unlikely
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Figure 5.1: Distribution of the size of exposure sets. The values on Y axis are in logarithmic
scale with base 10.

that human judges who evaluate the ranking outputs would be able to associate any meaning
with them.

5.5.3.2 Relevance score statistics

We construct the relevance scores as described in Sec. 5.4.3. Community scores are derived
from the Whisper dataset collected by Correa et al. [2015] and the Twitter dataset collected
by Mondal et al. [2016]. The Twitter dataset, moreover, comes with the information regarding
tweet deletion. More precisely, by querying the Twitter API using a subset of the tweet
IDs, the authors were able to determine which tweets got deleted after publication. This
information was collected for 11M tweets, 400K of which turned out to have been removed.
We use these signals as the user score.

Because the information about post deletion is limited, the ground truth provides us
with only a partial ranking over RkNN queries. We therefore exclude the queries for which
we cannot infer relevance from the evaluation in this part. These include: (i) the queries
matching posts for which we do not have the deletion information, (ii) the queries with only
a partial overlap with the source post (it might happen that a post is returned in the top-k
results for a query even though not all query words appear in the post; for such queries
we do not assume the deletion information signals not wanting to be associated with the
words). Excluding exposure sets with less than 30 queries, which do not need ranking to be
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Feature Example queries
Sexual gross kiss, breast whitney, gay shirt
Humans dumbest guy, girl xoxo, chess kid
Friend pal wife, fellow fool, ummm honey
Anger buy weapon, mad scientist, idiot vegetarian

Table 5.2: Most important semantic features learned by the L2R model together with
example queries.

presentable to users, we are left with around 15K profiles under evaluation.

5.5.3.3 Ranking algorithm

To learn the ranking function, we use SVMrank [Joachims 2006] with the linear kernel.
Parameter C is tuned on a random sample of 10% RkNN sets, and the rest of the data is
used to evaluate the L2R method in a 10-fold cross-validation.

5.5.3.4 Feature analysis

The weights of the decision boundary vector learned using SVM with a linear kernel can
be interpreted as feature importance weights. Table 5.2 lists the most important features
learned by our model together with example queries exhibiting the features. The model
captures well that the categories related to personal issues are the ones people feel more
uncomfortable sharing. High importance of words related to sexuality stems from the bias
of the Whisper data – a large majority of anonymous posts from this community regard
sexuality. However, the methodology we propose is general enough to handle different types
of anonymous contents. For instance, as an alternative, it would be possible to collect
anonymous posts from more general Question & Answer communities such as Quora.

5.5.4 User-study evaluation

Because the relevance scores used for training the algorithm constitute noisy signals for
search exposure relevance, we evaluate the reranked exposure sets in a user study. The leading
question is whether users themselves would find the output useful, feeling that exposure by
top-ranked keywords would make them feel uncomfortable. This section provides the details
of the study.

5.5.4.1 Evaluation setup

To evaluate the rankings, we sample a number of exposure sets and a number of queries
from each.
User sampling. The first important thing to note is that not all of the exposure sets
contain sensitive queries. To account for this and make sure we cover the sensitive users in
the evaluation, we sample users non-uniformly in the following way. Queries within exposure
sets are ordered by the predicted relevance scores. The score of the highest ranking query
within a set can be thought of as an indicator of how sensitive the exposure set is overall (i.e.,
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the lower the highest score, the less sensitive content there is overall). For evaluation, we
choose the 50 most sensitive exposure sets, and 50 exposure sets sampled from the remaining
tail with the probability proportional to the predicted relevance of the highest scoring query.
We thus evaluate 100 exposure sets in total.
Query sampling. To construct assignments with reasonable workloads, we evaluate 50
queries from each of the sampled exposure sets. Having the queries ranked by the L2R
method under evaluation, we choose 25 highest scoring queries (to see how useful the top
of the ranking is), and 25 queries chosen uniformly randomly from the remaining tail (to
control if the head of the ranking does not miss critical queries).

5.5.4.2 AMT survey

Each set of 50 sampled queries was shown to 3 Amazon Mechanical Turk workers. The
queries were displayed in a random order. We required that the workers have a master
qualification (to ensure the quality of annotations) and are located in the USA (to prevent
language misunderstanding). Upon explaining the basic pipeline of the Twitter search engine
and priming the users about what exposure is, the survey asked the following question:

Would you feel concerned (uncomfortable, embarrassed, privacy-violated, or
threatened) if your tweet was returned as one of the top answers to these search
terms? (Yes/No)

Having three people evaluate each query leads to a 4-graded (0..3) relevance scale, based on
how many people chose Yes.

Out of 5K evaluated queries, 10% had a score of 3, 12% had a score of 2, 24% had a
score of 1, 54% had a score of 0. Inter-annotator agreement measured by Fleiss’ κ was 0.376,
which corresponds to a fair agreement.

5.5.4.3 Results

We report the values for NDCG@[5,10,20] and Kendall’s τ . Moreover, since the collected
scores offer good interpretability in terms of binary relevance as well, we also report
Precision@[5,10,20], assuming a query is search exposure relevant if it was marked by at
least one judge.

Table 5.3 shows the results of the user-study evaluation. Note that, although the queries
were sampled from the L2R-ranked exposure sets, the collected judgments also let us evaluate
other ranking heuristics. We use the rankings based on the values of several high-level features
as baselines. Majority of these perform significantly worse than the L2R method – differences
significant by a paired t-test with p < 0.05 are marked with the ∗ symbol. The strongest
heuristics include document surprisal and selectivity. Both of these quantities capture a
different aspect of the rareness of the content, and thus shine in situations where, for instance,
the judges thought that exposure by a typo might lead to embarrassment. We also observed
that a number of query tokens are typos that can be mapped to a sensitive word. Such
queries were often marked by the judges as relevant, and because of their rareness, heuristics
such as selectivity gain in performance.
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5.5.4.4 Anecdotal examples of sensitive exposure sets

Table 5.4 presents examples of exposure sets with the top-10 queries ranked by the L2R
method and is meant as an overview of the types of sensitive keywords a user might be
exposed by in Twitter. Queries were generated from the contents of user posts, which means
that each presented word combination matches at least one post in our sample. We resort
to showing a manually chosen subset of examples, as the top sensitive exposure sets were
highly explicit and offensive.

5.6 Insights into search exposure relevance

5.6.1 Tweet context

An interesting question regarding search exposure relevance is whether it is influenced by
the context of the returned tweet. It might happen that a query that looks sensitive is
constructed from words that do not form a coherent context within a post, thus being a
false alarm. On the other hand, innocent looking queries might bring out posts that do
contain sensitive content otherwise.

To gain preliminary insight into this problem, we conducted a second survey on AMT,
in which the workers assessed the relevance of queries, also knowing the tweet that is being
returned as a result; the rest of the setup remained analogous. Comparison of these two
surveys is summarized in Figure 5.2. Existence of dark squares outside of the diagonal
suggests indeed that the context might change the exposure relevance judgement. This
happens both ways, suggesting that both scenarios we mentioned in the previous paragraph
are plausible. We believe that investigating the factors that influence the search exposure
relevance is an interesting topic for future work.

5.6.2 Search exposure relevance vs topical sensitivity

Topical sensitivity is a concept introduced for studying privacy risks of text, in particular for
quantifying R-Susceptibility (Rank-Susceptibility) in communities where user profiles consist
of textual contents [Biega et al. 2016]. It measures how likely the presence of words from
different topics (understood as distributions over words) leads to privacy risks, irrespective
of the user or community context. We want to understand if there is a correlation between
topical sensitivity defined this way and the search exposure relevance. We thus annotate
each query from our evaluation set using the topical sensitivity annotations sensitivity(t)
collected in the R-Susceptibility paper [Biega et al. 2016]. We define the sensitivity of a
query as:

sensitivity(q) = 1
|q|
∑
w∈q

∑
t

sensitivity(t) · P (w|t) (5.10)

where P (w|t) is the probability of a word w in the topic t.
We measure the correlation between these sensitivity-annotations and the collected

relevance scores using the Pearson correlation coefficient. We find a strong correlation
between these scores in case of the relevance collected for queries without the tweet context
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Figure 5.2: Influence of the tweet context on search exposure relevance. The number in a
square x(q), y(q + t) denotes the number of tweets that received the score of x in the study
with queries only, and the score of y in the study with queries in context.

(Pearson coefficient of 0.44), and a little lower correlation (Pearson coefficient of 0.32) in
case of the relevance judgments for queries with the tweet context. This result reconfirms the
findings from the evaluation of the L2R method – the meaning of the query is an important
factor in determining search exposure relevance, and topical sensitivity is a viable alternative
for implicit relevance scores.

5.7 Related work

Exposure. Although, to the best of our knowledge, the problem of search exposure has
not been addressed in the past, there are different aspects of user and data exposure that
have been studied in the prior literature. Mondal et al. [2016] proposed exposure control as
an alternative solution to access control in social networks [Mondal et al. 2014], and later
devised solutions for longitudinal exposure control. [Biega et al. 2016] quantify privacy risks
for sensitive topics in rankings based on textual posts using the notion of R-Susceptibility.
Exposure has also been studied in the context of individual attribute leakage, such as
location [Shokri et al. 2011]. Another interesting problem is that of usability of exposure
warnings. Example solutions include depicting the current size of content audience by the
size of a displayed pair of eyes [Schlegel et al. 2011].
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blame gay, dutch gay, gay rabo, gay guy, blame dutch,
suck teacher, start tht, rider tour, donald duck, attack bad

gay racist, fuckin young, deal gay, simon watchin, fuckin kinda,
guy note, kind sum, live net, bcoz gay, dnt season

adopt convert, adopt religion, convert religion, convert essay, essay religion,
bon convert, bon religion, bon essay, river tonight, adult love

lesbian pregnant, lesbian music, lesbian live, boat lesbian, gay norway,
end lesbian, fritt gay, bell page, star trend, lesbian uuum

oooh virgin, virgin wen, video virgin, crack oooh, oooh wen,
normal tom, normal smith, smith tom, swine year, outfit xoxo
gay israel, bit web, gay gunman, michael pant, hat pant,
attack bit, e-mail match, israel wtf, china tale, obama recov

david queer, queer ted, asian queer, queer warhol, david folk,
model race, keith york, driver rule, kind remix, jean odd
camera stick, stick tape, rep usa, china rep, stick tehran,

governor tehran, governor stick, prayer tehran, prayer tehran, israel rep
detail obama, alex detail, alex obama, box long, bloomberg flash,

dubai investor, dubai investor, june real, june real, alybi*@gmail.com investor
u.s. union, mexico union, canada union, american union, demand democrat,

agenda reform, nasa obama, american borderless, nazi obama, demand overhaul

Table 5.4: Top-10 sensitive exposing queries returned by the L2R model for a subset of users.

Privacy-preserving IR. Problems studied in privacy-preserving IR include sanitization
of query logs prior to a release [Götz et al. 2012; Zhang et al. 2016a], or obfuscation of query
histories through broadened or dummy queries [Gervais et al. 2014; Wang and Ravishankar
2014]. A number of works also investigate the viability of personalized search under privacy
constraints [Chen et al. 2011; Shen et al. 2007; Xu et al. 2007; Zhu et al. 2010].

User protection and internal audits. Service providers increasingly come under close
scrutiny by external organizations and observers, including journalists and researchers. This
pressure encourages the SPs to perform proactive, internal audits to improve their services
and infrastructure. New solutions for increased privacy are constantly introduced to mitigate
the threats for users from external adversaries in services like maps [Huang et al. 2017]. User
data itself has also been analyzed, for example, to deliver better security protections in the
context of account recovery personal questions [Bonneau et al. 2015]. Beyond privacy, there
are also other societal issues that press SPs to audit their services, including the issues of
fairness and bias [Feldman et al. 2015], or user satisfaction with search results [Mehrotra
et al. 2017].

Search exposure can be seen as another dimension for internal audits. Along these lines,
we believe more work can be done to examine which types of search queries should be blocked
altogether, and which search results should be removed to protect against finding users in
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sensitive contexts. While certain ad-hoc protections are already in place (for instance, it
seems impossible to explicitly query for credit card numbers in Google, Twitter, or Facebook,
since these tokens get post-processed and end up matching other numerical tokens as well),
there is a need for a more direct examination and protection mechanisms regarding the
exposure of users in search systems.

(Reverse) k-nearest-neighbors problems. The problem of finding reverse k nearest
neighbors has been studied in scenarios different from the one proposed in this thesis. These
scenarios include matching the user preferences to products [Vlachou et al. 2011], or assigning
new publications to subscribers [Basik et al. 2015; Chen and Cong 2015]. Reverse k nearest
neighbors problem can be studied in two different setups: monochromatic or bichromatic.
The setup is determined by whether sets of queries and sets of reverse nearest neighbors
are the same (monochromatic) or disjoint (bichromatic) [Emrich et al. 2015] The model
proposed in this thesis is an instance of a bichromatic RkNN, since the sets of queries and
documents are disjoint.

Existing algorithms for finding reverse k nearest neighbors are not sufficient for application
in the context of search exposure due to high dimensionality, large cardinality and sparsity of
the query space. Most approaches heavily depend on geometric properties of the underlying
space to perform efficient pruning [Vlachou et al. 2011].

5.8 Conclusion
This chapter introduces the problem of quantifying user search exposure, that is, finding the
queries for which any of the user’s posts is returned as a top-ranked result in a given search
system. We cast the problem formally as reverse search and propose a method for ranking
the queries in the resulting exposure sets to make the output user-friendly. The ranking
task, moreover, uses a newly defined concept of search exposure relevance, which we studied
in a series of AMT surveys.

We believe there are a number of fascinating research questions that could be studied
as an extension to the work presented in this chapter. On the generation side, considering
various ranking models, expanding the query length and efficient stream processing of
search exposure requests, including parallel computation, caching and request partitioning
would be necessary in a real-world deployment. On the usability and ranking side, further
understanding of exposure relevance, designing better ranking methods, incorporating the
probabilities of queries being asked to the overall setup, or detecting exposure in black-box
systems, are only a few of such extension possibilities. Finally, further investigating layman
perceptions regarding search exposure, as well as developing the expert understanding of
the possible threats, would give us a better grip of this newly defined privacy question.
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Privacy of Internet users is at stake because they expose personal information in
posts created in online communities, in search queries, and other activities. An
adversary that monitors a community may identify the users with the most sensitive

properties and utilize this knowledge against them (e.g., by adjusting the pricing of goods or
targeting ads of sensitive nature). Existing privacy models for structured data are inadequate
to capture privacy risks from user posts.

This chapter presents a ranking-based approach to the assessment of privacy risks
emerging from textual contents in online communities, focusing on sensitive topics, such
as being depressed. We propose ranking as a means of modeling a rational adversary who
targets the most afflicted users. To capture the adversary’s background knowledge regarding
vocabulary and correlations, we use latent topic models. We cast these considerations into
the new model of R-Susceptibility, which can inform and alert users about their potential
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for being targeted, and devise measures for quantitative risk assessment. Experiments with
real-world data show the feasibility of our approach.

6.1 Introduction

Motivation and background. The goal of this chapter is to provide privacy risk
assessments from textual data for users in online communities. An online post may directly or
indirectly disclose personal information, such as gender, age, political affiliation, or interests.
An adversary can combine such observations with his background knowledge of correlations
between different attributes to infer privacy-sensitive information and discriminate against
users. We argue that existing privacy models for structured data, such as k-anonymity
[Sweeney 2002b], l-diversity [Machanavajjhala et al. 2007], t-closeness [Li et al. 2007],
membership privacy [Li et al. 2013] and differential privacy [Dwork 2008], are inherently
inappropriate to capture these situations. One reason is that user posts in social media are
mostly of textual form, inducing a high-dimensional data space of word-level or phrase-level
features. A second reason is that users might not want to be prevented from posting contents,
but instead be selectively warned about emerging privacy risks. In our setting, certain
assumptions also differ from the assumptions of prior work on privacy-preserving data
publishing [Fung et al. 2010]: users do want to post information, but they should be aware of
possible exposure and targeting risks. For these reasons, we pursue an IR-centric approach
to privacy in this chapter, making novel use of topic models and ranking.

Scenario. To understand why adversaries and user risks are different from the privacy
concerns for structured databases, consider the following scenario. An unscrupulous drug
company wishes to advertise its new anxiety-reducing drug to Facebook users. It decides
to target ads at a million users that are most susceptible to be afflicted by depression
within the 1 billion population of Facebook. The company plans to infer users’ demographics
by text mining their posts and combine it with the background knowledge correlating
demographics and certain vocabulary usage with depression, obtained from text mining an
archive of medical journals. In such a scenario, how can a Facebook user estimate her risk
of being targeted? Similar issues arise also within specialized online communities such as
healthboards.com or patient.co.uk. Although these have a much smaller scale, a smart
adversary would still target only a subset of highly susceptible users to avoid the impression
of mass spamming.

Targeted ads of sensitive nature constitute one kind of risk, but there are even more
severe threats with real cases reported: scoring users for financial credit worthiness or
insurance payments, factoring a user’s social-media posts in assessing her job application,
and more. Despite these being big trends, most users do not need hard guarantees regarding
privacy (e.g., preventing de-anonymization by all means), and perfect anonymity cannot be
guaranteed without severely diminishing the utility of social media. For example, someone
who always posts using a one-off anonymous identity cannot build up a reputation as
a credible information source. Conversely, even making all posts under a pseudonym is
insufficient to prevent tracking-and-rating companies (e.g., www.spokeo.com) from linking

healthboards.com
patient.co.uk
www.spokeo.com
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user accounts across different social platforms. Therefore, we focus on the assessment of
privacy risks and on alerting users to support their awareness, rather than pursuing the
elusive goal of enforcing privacy.

Existing privacy models fail to capture theses issues, along the following dimensions:

• Data model: Privacy models like k-anonymity or differential privacy are primarily
geared for structured data or content that can be cast into low-dimensional feature
spaces. Capturing risks from textual contents in online communities faces the problem
of high-dimensional feature vectors (e.g., word bigrams). Prior work that coped with
text in specific settings, such as predicting sensitive posts [Peddinti et al. 2014],
sanitizing the information from query logs [Carpineto and Romano 2015; Navarro-
Arribas et al. 2012], or publishing high-dimensional datasets [Day and Li 2015]. Our
goal, on the other hand, is to be able to quantify privacy risks from text in a generic
way.

• Adversary’s background knowledge: Prior work on privacy assumes computationally
powerful adversaries, but disregards or makes special assumptions about the back-
ground knowledge that an adversary may have beyond the dataset at hand. However,
adversaries may easilly tap into many datasets including large text corpora, thus
obtaining a model of the typical vocabulary used by potential targets as well as
semantic dependencies or statistical correlations between topics.

• Disclosure vs. discrimination risk: Existing privacy models focus on limiting infor-
mation disclosure, but they do not capture the exposure within a community with
regard to sensitive properties. Standing out in a community this way may result in
discriminatory treatment, such as being rejected for loans or job applications, or
receiving ads of sensitive nature.

Approach and challenges. This thesis introduces R-Susceptibility: a ranking-based
privacy risk model for assessing users’ privacy risks in online communities, accompanied
by IR-style risk measures for quantifying risks from textual contents. The model is very
versatile: in this chapter we demonstrate how it can capture user posts or search queries, but
it can also be used with click streams, and other online activities. Semantic dependencies
and statistical correlations among words and sensitive topics are represented using latent
topic models, such as LDA [Blei et al. 2003] or Skip-grams [Mikolov et al. 2013]. This
way, we anticipate adversaries with rich background knowledge. Adversaries are assumed
to be rational: they target only a fraction of “promising” users. Therefore, we model the
risk of a user as the ranking position in the community when all the users are ordered by
the relevance of their contents to sensitive topics, such as pregnancy, depression, financial
debts, etc. This ranking-based model is meant to alert the users whenever critical situations
arise. We posit that users might be then guided to selectively post anonymously. Our model
addresses several technical challenges:

• Sensitive vs. general topics: A trained latent topic model does not indicate which
of the topics are privacy-sensitive. We carried out a crowdsourcing study to identify
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sensitive topics. Our study differs from the prior work of [Peddinti et al. 2014] as the
latter relied on explicit categories.

• Personal vs. professional interest: A user who posts about a sensitive topic may merely
have a professional or educational interest without being personally afflicted. To be
able to rank such users lower, our model introduces the notion of topical breadth of
interest, complementing the user’s strength of interest in a sensitive topic.

• Personal interest vs. curiosity: A user may become interested in a topic out of curiosity,
perhaps prompted by an external event (e.g., a celebrity scandal). To be able to rank
such non-critical users lower, our model also considers the temporal variation of interest
in a topic.

The chapter’s salient contributions are:

• a novel approach to privacy risks focusing on exposure in user rankings within online
communities, and emphasizing risk awareness;

• a framework for quantifying privacy risks from textual contents in online communities,
based on latent topic models and user rankings;

• measures for computing risk scores with regard to sensitive topics based on users’
posts or search queries.

6.2 R-Susceptibility model

6.2.1 Sensitive states and adversaries

We assess the risk of a user being perceived as afflicted by a sensitive state, such as depression,
pregnancy, or financial debts. An adversary in our model attempts to find the most susceptible
users, that is, the users who are most exposed with regard to a sensitive state. For instance,
an adversarial insurance company might want to identify the users who are likely afflicted
by certain diseases, an adversarial HR department of a company might want to screen for
the users with likely drug or alcohol problems, while a seller of illegal anti-depressants might
want to find the users most likely to be depressed, and thus prospective customers.

We therefore propose ranking as a means of modeling a rational adversary trying to
identify the most susceptible users. To rank the users with respect to a given sensitive
state, an adversary needs to choose a measure of quantitative risk assessment based on the
contents of user profiles. We discuss several such measures in Section 6.3.

6.2.2 Sensitive topics

We associate sensitive states with a vocabulary distribution, i.e., distributional vectors of
related words. For example, the topic financial debts, could be captured by related words
and phrases like loan, mortgage, money, problem, sorrows, or sleepless night. Such salient
phrases related to a sensitive state can be obtained by unsupervised or semi-supervised
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training of latent topic models over external datasets such as news archives, digital libraries
or large crawls of social media. This way we capture the adversaries’ background knowledge
about the vocabulary for a topic and about semantic dependencies and correlations.

Sensitive states might manifest themselves in the online contents of users. User posts can
also be characterized as distributional vectors of salient words. Then, the similarity between
the distributional vectors of the user’s posts and a sensitive topic can be used to assess the
user’s susceptibility to being exposed with regard to that topic.

6.2.3 Background knowledge

An adversary in our model is assumed to be interested in a sensitive state and aims to target
a fraction of the most afflicted users. The adversary has background knowledge, characterized
by statistical language and topic models. This is a natural form of useful knowledge for a
rational adversary who wants rank the users based on the textual contents, and to bound
the cost of his targeting efforts.

In this dissertation, we consider three versions of adversary’s background knowledge.
The basic version is the knowledge of the most salient words for different topics, which
is assumed in all the solutions we explore. The more advanced version assumes that the
adversary is able to compute similarities between words, in the sense of semantic relatedness.
Finally, in some of the solutions, we assume an adversary is able to assign latent topics to
broader thematic domains, e.g., the topic of depression to the domain of psychiatry.

We believe that this model reflects a wide class of adversaries whose goal is to discriminate
and target the most susceptible users in online communities.

6.2.4 R-Susceptibility

We propose R-Susceptibility (Rank-Susceptibility) as a measure of a user’s privacy risk. To
measure R-Susceptibility with respect to a sensitive topic, we first rank all users within an
online community based on their decreasing susceptibility of being exposed with regard to a
sensitive topic (as described above) and then compute the position where the user is ranked.

Intuitively, the R-Susceptibility model could also have the following IR interpretation: we
rank the users according to the relevance of their posts to a query containing the words of a
sensitive topic, and choose the top-ranked, who should be the most likely to be personally
afflicted.

6.3 Risk assessment measures

Risk measures are plug-in components in the framework and orthogonal to the idea of
R-Susceptibility. In this dissertation, we begin by investigating three kinds of risk scores,
leaving an extended risk-measure study as future work.

The first two of the risk scores are baselines, inspired by standard measures in privacy
research, namely, the entropy of attribute value distributions (as used in the t-closeness
model) and the changes in the global probability distributions of attribute values incurred
by the inclusion of an individual user’s data (as used in the differential privacy model). The
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third measure is a novel IR-centric score based on topic models, capturing lexical correlations
and three different characteristics of user interest in a topic: the strength of interest, the
breadth of interest, and the temporal variation of interest.

Desired properties. By considering the community and interpreting risk with respect
to a user’s rank in the community, our framework does not impose any restrictions on the
absolute values or the value domains of valid risk measures. Intuitively, for the framework to
function, we expect a good measure to correlate with human assessments on the sensitivity
of user profiles: the more human observers agree that a user might be in a sensitive state,
the higher the value of the risk score should be.

6.3.1 Entropy baseline measure

The entropy baseline measure is inspired by comparing a global probability distribution
(for an entire community) against a local distribution (for an individual user) using relative
entropy (aka KL divergence). We apply this measure to textual data as follows.

Let X be a sensitive topic, and {x1, ..., xj} be the salient words and phrases of X. The
knowledge of this vocabulary for different topics is assumed to be a part of the adversarial
background knowledge (e.g., derived from latent topic models). We treat x1, ..., xj as database
attributes and represent users as database records where the value of an attribute xi equals
to 1 if the word appears in the user’s contents, and to 0 otherwise.

Let U0 be the user for whom we wish to compute the risk score with respect to X, and
U = {U1, .., Uk} be the set of other users in the community. Let further be U∗ = {U0} ∪ U ,
and let PU , PU∗ denote the distributions of attribute values for U and U∗, respectively.

We compute the risk score by averaging the relative entropy of the univariate distributions
PU , PU∗ for the individual attributes {x1, ..., xj}. Note that measuring the relative entropy
over the multivariate joint distributions of attributes could be an alternative, but we do not
pursue this here because of the data sparseness that we would face.

Definition 3 (Entropy baseline risk score of topic X for U0). The entropy baseline risk
score of the user U0 with respect to a topic X is:

riskENT(U0, X) = 1
j

∑
i

∑
v={0,1}

PU [xi = v]log( PU [xi = v]
PU∗ [xi = v] ) (6.1)

The ranking method based on this definition is being referred to as ENT.

Measure properties. It holds that riskENT(U0, X) ≥ 0. The lowest value of 0 is reached
when the user does not have any of the topic’s salient attributes in her observable contents.
Otherwise, the risk score is lowest when half of the community’s users exhibit an attribute
in their contents and highest when all or none of the users have the attribute.

6.3.2 Differential-privacy baseline measure

The differential-privacy-based measure is inspired by the definition of differential privacy,
that is calculating the changes of attribute probabilities incurred by the inclusion of a user’s
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data. Let X, {x1, ..., xj}, U0, U , U∗, PU , and PU∗ be defined as in the previous section. The
differential privacy principle requires that:

PU [xi] ≤ 2εPU∗ [xi] and PU∗ [xi] ≤ 2εPU [xi] (6.2)

for a small ε > 0. To give an ε-differential-privacy guarantee, existing methods would
perturb the data by Laplacian noise if the inequalities are not already satisfied. However,
our “attributes” are words in user posts that the user intentionally chose and our goal is to
quantify risk rather than perturb the data. We thus aim to determine the best possible value
of ε for which the guarantee holds without perturbation. This is the minimum ε for each xi,
but the guarantee is only as strong as the weakest xi, leading to the following formulation:

Definition 4 (Differential-privacy baseline risk score of topic X for U0). The differential-
privacy baseline risk score of the user U0 with respect to a topic X is:

riskD-P(U0, X) = max
xi

(
max

(
log

(
PU [xi]
PU∗ [xi]

)
, log

(
PU∗ [xi]
PU [xi]

)))
(6.3)

The ranking method based on this definition is being referred to as DIFF-PRIV.

Measure properties. It holds that riskD-P(U0, X) ≥ 0. The risk value is lowest for a
user who does not have any of the sensitive topic’s salient attributes in her contents and
highest for a user who has a critical attribute that is not present in the contents of any other
user.

6.3.3 Topical risk measure

To this end, we construct a distributional representation of each of the sensitive topics X
(e.g., financial debts), user contents U (e.g., from an online community such as quora.com),
and each post P the user authors in the online community. We model X, P and U as vectors
in a distributional vector space.

6.3.3.1 Distributional vectors for topics and users

Topic vectors. Topics are represented as vocabulary distributions found by collecting
word statistics over suitably chosen corpora.

Definition 5 (Sensitive Topic Vector). For sensitive topic X, the topic vector is a distribu-
tional vector ~X constructed using words or bigrams weighted by topic relevance.

For example, hiv and positive are salient for the topic of hiv infection. Such topics and
their salient phrases can be automatically extracted by applying latent topic analysis to
large, thematically broad text corpora.

User vectors. To be able to relate posts and users to topics, we map each user U and
post P created by the user in an online community to a vector.

quora.com
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Definition 6 (User Post and User Vectors). The content of a post P of a user U is modeled
as a distributional vector ~P . User U in the context of a topic X is modeled as a distributional
vector ~U defined as:

~U = max
P∈U

cos(~P , ~X) (6.4)

Vector construction. The exact mapping of topics and posts to vectors depends on
the vector space in which we are operating. We use three different configurations in our
experiments: i) a bag-of-words model (bow), ii) an LDA model (lda), and iii) a Skip-gram
model (w2v).

Note that the use of LDA here is to construct a lower-dimensional vector space; this is
orthogonal to using LDA for obtaining topics with their salient phrases, which we discussed
above.

In the bow vector space, we create topic vectors directly over the characteristic topic
words with binary scoring; we also use these words as features with tf-scoring for user and
post vectors.

In the lda model, topic vectors are indicator vectors of for the latent dimensions. Users
and posts are treated as documents that LDA maps into its low-dimensional latent space.

The third technique that we consider, w2v, is a model based on learning word relatedness,
which can be trained over large text corpora [Mikolov et al. 2013]. To create the topic vectors
in this word-centric vector space, we compute a weighted sum of words from the previously
computed sensitive topic distributions. Since there is no natural mapping of documents to
vectors in this setting, the procedure for posts is similar. However, to discount the impact of
words unrelated to the topics at hand, we introduce a topic-dependent weighting scheme for
user vectors. Namely, for a topic X and a post containing the set of words {v1, v2, . . . }, the
post vector is ~P =

∑
j cos(~vj , ~X) · ~vj .

Risk scoring. Given these vectors, we can now compare a user posting history against a
sensitive topic by vector-based similarity measures, like the cosine similarity. An advantage
of this risk measure is that, unlike the entropy or diff-priv measures, it does not require
any community-level data, as the risk score of a user is independent of other users’ data.
Thus, each user can compute her score locally and privately, and send the value to a server
to obtain an R-Susceptibility rank.

In addition to quantifying the strength of user interest in a sensitive topic, we also capture
the breadth and temporal variation of that interest. This is crucial to avoid erroneously
ranking higher those users who have a professional interest in a topic without being personally
afflicted, or are temporarily interested out of curiosity. In our previous preliminary work in
this area, we identified these two components to be crucial for reducing classification error
in a similar setup [Biega et al. 2014].

w2v
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6.3.3.2 Strength of interest

Having a vector representation of a user U , we can now compute the similarity between U
and a topic vector X.

Definition 7 (Topic-aware risk score). The strength-of-interest risk score for a user U with
respect to a topic X is:

risk(U,X) = cos
(
~U, ~X

)
(6.5)

We further refer to methods based on this definition as bow, lda, and w2v.

Measure properties. It holds that −1 ≤ risk(U,X) ≤ 1. A high value of this measure
means the user has at least one post with vocabulary related to the topic. Thus, the strength
of interest is reflected by the presence of the topic’s salient vocabulary in user posts.

6.3.3.3 Breadth of interest

When ranking users, an adversary might want to distinguish between users who show a
focused interest in a topic and users who show a broad interest in many topics within a
domain, ranking the former higher than the latter. Applying this strategy could help, for
instance, to capture users who are not personally afflicted but rather showing educational,
hobbyist or professional interest in a topic. For example, for the topic of financial debts, a
bank agent or finance hobbyist could offer advice in Q&A communities; similarly, a medical
doctor or student could engage herself in health forums.

The posts of a user with a broad interest should exhibit a diversity of topics within their
respective domain. We aim to capture this behavior, by means of distributional vectors,
assigning each topic X to a broader domain, like finance, medicine, psychology, etc.

Definition 8 (Domain Vectors). A domain D is a set of topics X1, ..., X|D| and its vector
representation is a set of corresponding topic vectors ( ~X1, ..., ~X|D|).

To assess the risk taking into account whether a user U has a focused or a broad interest
in a topic X, we compute:

1. how similar ~U is to ~X and

2. how dissimilar ~U is to the domain D by computing the distances between ~U and ~Xj

for j = 1..|D| and taking the dk ∗ |D|e-th largest value, for some 0 < k ≤ 1.

If both of these measures are high, then we conclude that U is personally afflicted by
topic X.

Definition 9 (Domain-aware risk score). The domain-aware risk score for a user U with
respect to a topic X from the domain D is:

riskD(U,X) = cos
(
~U, ~X

)
−maxdk∗|D|e{cos

(
~U, ~Xj

)
|}j=1..|D| (6.6)

We further refer to methods based on this definition as bow-d, lda-d, and w2v-d.
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Measure properties. It holds that −2 ≤ riskD(U,X) ≤ 2. The value would be high for
a user who has a post containing topic’s salient vocabulary, but whose contents do not
exhibit any vocabulary from other topics in the respective domain. A low value occurs in a
situation where the user has not written any posts related to the topic at hand, but has
contents related to other topics in the domain. Studying the relative importance of the two
components in different online communities is an interesting topic of future work.

The intuition for parameter k is that a personally afflicted user would not have high
posting activities in k-fraction of different topics within the same domain. The value of the
parameter controls how large the domain coverage should be for the users to be considered
broadly interested. In practice, setting this parameter requires the knowledge of the breadth
of topics discussed in a particular community.

6.3.3.4 Temporal variation of interest

Being interested in users most likely afflicted by a given state, we would like to rank the users
who exhibit recurring activity regarding a topic X higher than the non-afflicted (possibly
curious or exploratory) users exhibiting a short-term interest in the topic. Such a bursty
activity might be prompted by prominent news related to X, be it sex scandals in the press,
or social campaigns about depression.

To capture this issue, rather than computing a user vector ~U over the entire user history,
we divide the history into time buckets and compute a sequence of vectors ~Ui using the
contents from each bucket i separately. In our model, bucketization may be realized at
different granularity levels depending on the user observation period and the characteristics
of the community.

We then identify the top-m time buckets with the highest risk level, representing m
different time periods (such as days or weeks). Let us denote these buckets of the user model
as U∗1 , . . . , U∗m. A user whose interest in X is clearly above the level of a bursty interest
(signifying occasional curiosity) would consistently have high risk scores in all of the top-m
buckets. This leads us to our next definition of a user’s privacy risk regarding topic X.

Definition 10 (Time-aware risk score). The time-aware risk score for a user U in time
period i with respect to a topic X is:

riskT(U,X) = avgi=1..m

{
cos
(
~U∗i ,

~X
)}

(6.7)

We further refer to methods based on this definition as bow-t, lda-t, and w2v-t.

Measure properties. It holds that −1 ≤ riskT(U,X) ≤ 1. The value would be high for
a user whose posts contain relevant topic vocabulary in at least m observation buckets, and
low for a user who does not exhibit topic’s vocabulary in their contents.

The choice of a particular value of the m parameter depends on the available observation
timeline and the characteristics of a given community. The parameter controls how often
the activity regarding a topic should occur in order to not be considered occasional.
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6.3.3.5 Combining domain- and time-awareness

The final measure we introduce combines all the aforementioned dimensions of interest. Note
that we use bucketized user contents for computing the temporal variation component, but
the breadth-of-interest component is computed over the full contents.

Definition 11 (Domain- and time-aware risk score). The risk of user U in time period i
for topic X in domain D is:

riskDT(U,X) = avgi=1..m

{
cos
(
~U∗i ,

~X
)}
− cos

(
~U,
(
~D − ~X

))
. (6.8)

We further refer to methods based on this definition as bow-dt, lda-dt, and w2v-dt.

6.4 Identifying sensitive topics

To complete our framework, we need to train a background knowledge model and answer
the remaining question of how to identify sensitive topics. Although our model is applicable
to any topic irrespective of its sensitivity, in practice users would only be interested in
their R-Susceptibility ranks for truly sensitive topics. There is indeed a systematic way of
gathering such information in a reasonably inter-subjective manner: training a latent topic
model on a background corpus and crowdsourcing sensitivity judgments for each topic. This
section presents our results along these lines.

6.4.1 Experiments on topic sensitivity

Datasets. We trained 3 LDA models, using the Mallet topic modeling toolkit: i) with 500
topics, on 600K Quora posts we crawled ii) with 200 topics, on 3M posts from health Q&A
online forums, and iii) with 500 topics, on a sample of 700K articles from the New York
Times (NYT) news archive.

Crowdsourcing sensitivity and domain judgements. We collected human judge-
ments regarding the sensitivity and the domains of topics using Amazon Mechanical Turk
(AMT), employing only master workers from the USA, and collecting 7 judgements per
topic. For each of the topics, the workers were shown the 20 most salient words computed
by LDA, and asked whether they would consider a post in social media containing these
words privacy-sensitive. We explained that by privacy-sensitive we mean that a person uses
these words because he/she is in a privacy-sensitive situation (e.g, alcohol addicted), or
that the usage of these words might lead to a privacy-sensitive situation (e.g., political
extremism). The first condition can capture, for instance, words related to diseases, the
second can capture words related to political or religious positions.

We computed Fleiss’ Kappa to measure the inter-annotator agreement for this task,
obtaining 0.241 for the Quora topics, 0.294 for the HF topics, and 0.157 for the NYT
topics. These low values confirm that sensitivity is rather subjective. However, there is a
considerable number of topics in all of these corpora, which were unanimously or almost
unanimously rated as sensitive. These were mostly related to health, private relationships,
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#judges #topics #topics #topics
Quora NYT HF

7 29 8 38
6 43 27 32
5 48 60 30
4 56 84 21
3 68 73 22
2 99 90 28
1 106 111 23
0 51 47 6

Table 6.1: #topics with #judges agreeing on the topic being sensitive.

Topic Vocabulary

clinical depression
depression depress suicide feel
depressed suffer suicidal commit

drug addiction
drug addiction addict cocaine
heroin substance meth addictive

pregnancy
baby birth pregnancy pregnant
mother woman born child

hiv and viral diseases
hiv disease aids virus
spread infection cure vaccine

financial debts
debt loan pay student
interest payment money owe

Table 6.2: Examples: vocabulary of sensitive topics.

political and religious convictions, personal finance, legal problems and others. Table 6.1
shows the numbers of topics on which certain numbers of judges agree on their sensitivity.

The judges were also asked to assign a topic to one of seven high-level categories. Six
of these, potentially containing some sensitive topics, were chosen based on the top-level
Microsoft Academic Search categories. The annotators could also choose a generic category
other.

Topics for evaluation in Section 6.5. For our further experiments, to make the much
more laborious and costly evaluation of user profiles feasible, we leverage the above study to
restrict the evaluation to 5 topics from the group of the most sensitive topics. The choice
of particular topics is guided by the reported cases of social media screening by insurance
companies, employers, and credit companies mentioned in Section 7.1. These are: clinical
depression, drug addiction, hiv, pregnancy, and financial debts, assigned to the domains of
psychology, medicine, and finance&economy. Table 6.2 shows the most prominent words for
each of the chosen topics from the Quora topic model.
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6.5 Experiments

6.5.1 Setup

6.5.1.1 Data sources

To test our methods in a variety of scenarios, we constructed three datasets using online
communitites of different nature. As a first data source, we used the AOL query log collected
between March and May 2006. The resulting data source amounts to around 107K users
and more than 13M queries. The second data source consisted of over 5M posts spanning
13 years (2000-2013) from healthboards and ehealthforum Q&A health communities. We
also collected data from the Quora Q&A community over a period of three months, between
February and May 2015. The crawl focused on Quora users who were active in categories
related to the considered sensitive topics and their domains, and comprised more than 200K
users and 1.3M posts.

Ethics. To adhere to ethical standards concerning incorporation of user data into re-
search, we decided to only use data that is publicly available – either as online profiles
(Quora, Health Q&A), or as datasets used in numerous other studies (AOL). We never
attempted to identify the individuals whose profiles we analyzed.

6.5.1.2 User sampling

We created our datasets by sampling the users from the data sources described above.
However, we encounter a technical challenge, as the number of sensitive users for a given
topic is very small when compared to the size of the whole community. Sampling users
uniformly would not constitute a good benchmark for risk scoring methods. For example,
we could achieve high accuracy, in a misleading way, by the simplistic prediction that all
users are non-sensitive.

What we want, though, is ranking evaluation – our goal is to see how sensitive the users
are in different ranking regions. Therefore, our sampling method is non-uniform and proceeds
as follows. We first rank all users for each of the datasets using our basic strength-of-interest
method from Section 6.3.3.2, and then sample users from this ranking. To pick a user, the
sampling procedure orders users by their score, then computes prefix sums Σi for all users
up to user i, with Σn being the score sum for all users. Then we draw a random number
between 0 and Σn. If the number falls between Σi and Σi+1, we choose user i+ 1 (with users
numbered from 1 to n. However, given that risk scores are extremely skewed, this sampling
does still not yield good coverage of all the ranking regions. Therefore, we transform the
original risk score q into aq, where constant a needs to be determined based on the score
skew in a data source. The intuition is to give a higher probability of being sampled to users
with higher scores, so that the final sample set has good coverage of users with both high
and low scores. Figure 6.1 depicts the depression risk scores of our 100 samples from the
AOL data vs. the scores of the original dataset of 170K users.

In our case, a value of a = 102 for the Health Q&A, and a value of a = 103 for the AOL
were reasonable to compensate the skew. For each of these datasets, we sampled 100 users
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Figure 6.1: Example comparison of risk scores of sample vs. full data.

for each sensitive topic. We did not perform this kind of sampling for Quora, as our dataset
was based on a focused crawl in the first place with focus on sensitive discussion threads.
Since evaluating sizeable Quora profiles requires much more effort, for this data source we
constructed smaller datasets with 40 users per topic. In total, our datasets comprised 1100
user profiles: personal histories of posts or queries.

6.5.1.3 User study for ground-truth labels

To assign sensitivity labels for user-topic pairs as ground truth, we used crowdsourcing and
asked human judges to examine user profiles with chronologically ordered textual posts.
Specifically, we asked whether based on the content of the profile, the judge suspects that
the user (or a family member) is in a given sensitive state.

To evaluate the AOL and Health Q&A datasets, we employed AMT master workers
from the USA and collected 5 judgements for each of the profiles. Since the majority of
Quora profiles contain hundreds of posts, to ensure that proper care is given to evaluating
them, we collected the judgements employing 19 students from our institution. We computed
Fleiss’ Kappa to quantify the global inter-annotator agreement across all the topics. The
respective values for the AOL, Health Forums and Quora datasets were 0.442, 0.444, and
0.468 respectively, all corresponding to a moderate agreement. Table 6.3 shows the number
of users who were marked by the human judges as sensitive by a majority vote.
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AOL HF Quora
depression 24 42 20
drugs 22 31 11
pregnancy 15 42 21
hiv 14 19 5
debts 24 n/a 11
TOTAL 99/500 134/400 68/200

Table 6.3: Number of sensitive users according to judges’ assessments (x/y means x sensitive
users out of y in total).

6.5.1.4 Configuration of methods

To evaluate the topic-model-based method, we used three different distributional vector
spaces: a bag-of-word vector space, as well as two 500-dimensional vector spaces trained with
(i) the LDA implementation from the Mallet toolkit [McCallum 2002] and (ii) word2vec1

tool [Mikolov et al. 2013]. The latter two models were trained on NYT and Quora corpora
described in Section 6.4.

In the breadth-of-interest model from Section 6.3.3.3, we set the parameter k to 0.3, i.e.
we want a user of a broad interest in a domain to have at least a 30% coverage of topics
from the domain.

In the temporal-variance-of-interest models described in Section 6.3.3.4, we compute the
results using weekly time buckets and set the number of buckets parameter m to 3.

We later analyze the robustness of the ranking methods with respect to these parameters.

6.5.1.5 Ranking effectiveness metrics

• R-Precision. For a given sensitive topic, where r users were identified by the judges
as sensitive, we compute the precision@r. When computing the average precision over
all sensitive topics, we report both micro and macro average scores (summing over
individual samples, and summing over topic precisions, respectively). To apply this
measure, for each of the profiles we have to cast the five collected judgements to a
binary score. We assume that an average of more than 0.5 classifies a user as sensitive.
Note that r-precision imitates an adversary who, for instance, knowing that 1% of the
population is depressed, ranks the users according to a depression-risk measure and
chooses the top 1% of the users for further investigation.

• Mean Average Precision (MAP). For a given sensitive topic, we compute the
average precision computed at the ranking positions of sensitive users.

• Normalized Discounted Cumulative Gain (NDCG). To asses the effectiveness
of our methods using the actual non-binary judge assessments, we employ NDCG,
which compares the rankings our methods yield with a perfect ranking obtained using
the crowdsourced scores.

1https://code.google.com/p/word2vec/

word2vec
https://code.google.com/p/word2vec/
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6.5.1.6 Significance testing

The number of topics in our experiments is too small to perform significance tests over macro-
averaged metrics. We thus resort to performing a paired t-test over r-precision differences
on individual test samples within a dataset, marking the significance in the micro-averaged
r-precision columns in the result tables. The ∗ symbols denote the case when the gain of a
given ranking method over the baseline (ent and diff-priv in Table 6.4, strength-of-interest
baselines in Table 6.5) is statistically significant with a p-value < 0.05. This lets us conclude
that a good r-precision score of a ranking method does not likely depend on the particular
choice of user profiles.

6.5.1.7 Research questions

The remainder of the experimental section seeks to answer the following research questions.

RQ 1: Do the proposed topical risk measures perform better than the entropy and
diff-priv methods in predicting human risk judgements? (Sec. 6.5.2.)

RQ 2: Does the topical risk scoring measure perform better when extended with the
breadth and temporal dimensions of user interest? (Sec. 6.5.3.)

RQ 3: How robust is the proposed method against changes in the parameter configuration
and the background knowledge of the adversary? (Sec. 6.5.4.)

6.5.2 Traditional vs. IR risk scoring

We begin the risk scoring methods analysis by comparing the effectiveness of the baseline
(entropy, diff-priv) and the strength-of-interest topical risk scoring methods. Here, we
choose the baseline IR-based methods for comparison, while exteding the measures with
dimensions of interest will be addressed in the sections to follow.

Table 6.4 shows that the lda risk scoring outperforms the alternatives (similar observation
holds for w2v), which confirms that these methods are not naturally applicable to textual
data in the context of risk scoring. The relatively good Precision@5 of these measures
indicates that the most sensitive users tend to use highly salient words. However, operating
on explicitly given salient attributes for each topic, the baseline measures do not capture any
lexical correlations, an important prerequisite to capture users manifesting their sensitivity
in a less direct way. This result validates the need to design new privacy risk measures better
tuned to textual contents.

6.5.3 Risk scoring with dimensions of interest

We posited that extending the topical risk measures with the breadth and the temporal-
variation dimensions of interest can help to predict sensitivity judgements better. Table 6.5
shows the evaluation results averaged over all topics, confirming that incorporating breadth
and temporal variation into the risk score indeed improves the ranking performance.

We observe that breadth-of-interest is especially important for Quora, which is a Q&A
community with a very wide variety of topics. Many Quora users seem to frequently post
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R-precision Prec@5 MAP NDCG
micro macro

AOL
entropy 0.495 0.496 0.760 0.524 0.819
diff-priv 0.475 0.465 0.480 0.492 0.789
w2v 0.556∗ 0.533 0.720 0.589 0.836

Health Forums
entropy 0.560 0.537 0.750 0.613 0.870
diff-priv 0.560 0.559 0.500 0.542 0.794
w2v 0.664∗ 0.634 0.750 0.696 0.894

Quora
entropy 0.239 0.205 0.240 0.317 0.632
diff-priv 0.239 0.223 0.200 0.310 0.623
w2v 0.343∗ 0.341 0.280 0.352 0.637

Table 6.4: Average metrics over all sensitive topics for different risk assessment measures

replies prompted by others rather than by their personal situation; hence the lower impact
of the temporal component. Contrary, in AOL the temporal component takes over. With
merely implicit cues in the form of queries, the temporal dimension is an important indicator
of user sensitivity (also for the annotators). The breadth-of-interest component performs
worse for AOL, possibly due to the short time span of the query log (3 months).

Note that in case of the proposed breadth-of-interest score, an underlying assumption is
that an adversary is able to assign latent topics to broader thematic domains. Thus the best
performing -DT methods imply a stronger background knowledge of an adversary.

Risk scoring for different topics Table 6.6 shows the values of r-precisions split by the
topic, for different variants of lda-based risk scoring. The trends observed in the results
averaged over all topics can be seen here as well - there are consistent improvements across
topics when incorporating the temporal and breadth dimensions. These results constitute
anecdotal evidence that the proposed methods are general enough to be potentially applied
to a variety of topics.

6.5.4 Robustness to configuration changes

Model changes. The BOW vector space models only an adversarial knowledge of salient
words for different topics, whereas the latent vector spaces additionally enable an adversary
to compute similarities between arbitrary words. The results presented in Table 6.5 show that
this has a direct consequence in the risk ranking performance. The methods with the latent
models as the background knowledge outperform the methods with the BOW background
knowledge, while being comparable with each other. Thus the model seems resilient to
rational background knowledge model changes, capturing a wide class of adversaries - the
rational, cost-aware adversaries adopting latent models.
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Training corpus changes. The results presented in the experimental section were obtained
using the Quora topic model as the background knowledge model. We ran additional
experiments using the NYT topic model described in section 6.4.1, and noticed that for the
topics which were captured in the other latent model as well, we observe similar trends and
dependencies in the results. This would suggest that an adversary has the freedom to choose
among the inputs where his topics of interest are well captured.
Parameter changes in risk measures. The topical risk measures introduce two param-
eters: k for coverage of domain topics, and m for the number of (weekly) time buckets.
Observing the values of r-precision and NDCG obtained when varying these parameters
between k = {0.1, 0.2, ..., 1.0}, and m = {1, 2, ..., 12}, yields the following observations. First,
when the parameters are set to values from the lower half of the ranges, we still observe
improvements over the baseline strength-of-interest measure. Second, when the parameters
are set to higher values, the results tend to deteriorate, possibly due to the incompleteness
of user profiles in our datasets. Third, we observe higher sensitivity to parameters when
a given dimension of interest is important for a given community (e.g. temporal for AOL,
breadth for Quora). This result suggests that there is room for improvement within the
framework of R-Susceptibility in that community-specific risk measures could be employed.

6.5.5 Discussion

The presented experimental results suggest that R-Susceptibility with appropriate risk
measures is able to identify sensitive users with reasonable accuracy. The topical risk
measures that quantify a user’s exposure with respect to different topics work well, especially
when the domain- and time-awareness components are included.

The R-Susceptibility framework allows the plugging of different risk measures, and in
the future more advanced measures could be studied to address some of the limitations of
this work. These could, for instance, model semi-experts, subtle vocabulary correlations,
user contexts, or specific characteristics of a community.

6.5.5.1 User guidance

The R-susceptibility model and risk measures can work on a user history in a streaming
manner, considering all contents up to a given point and periodically or continuously
repeating the risk assessment. These methods could also be embedded in a privacy advisor
tool that would help users assess their privacy risk, raising an alert when they become too
exposed with regard to a sensitive topic.

6.5.5.2 Possible countermeasures by the platform

To prevent the risks describe in this chapter, the platform could prevent displaying the
results related to certain sensitive topics. However, a countermeasure like this could also
be considered as censorship. A middle-ground approach might be then for the platform to
allow the users to select the topics for which they do not wish to be ranked.
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6.6 Related work
Data-centric privacy. Methods for privacy-preserving data publishing [Fung et al. 2010]
aim at preventing the disclosure of individuals’ sensitive attribute values, while maintaining
data utility, e.g., for data mining [Bertino et al. 2008], using concepts like k-anonymity
[Sweeney 2002b], l-diversity [Machanavajjhala et al. 2007], t-closeness [Li et al. 2007], and
membership privacy [Li et al. 2013]. All these models are geared for and limited to dealing
with structured data, and this holds also for the most powerful and versatile privacy model,
differential privacy [Dwork 2008]. In the field of Private Information Retrieval the goal of
retrieving data from a database without revealing the query is mainly addressed by query
encryption or obfuscation [Yekhanin 2010]. Generating dummy queries to obscure user
activity is another technique studied in this area [Pang et al. 2012].

Sensitivity prediction. There is little research on characterizing what constitutes a
sensitive topic. The recent work of Peddinti et al. [2014] analyzed features of posts and user
behavior in Quora, and developed a classifier that can predict the sensitivity of individual
posts. However, the solution is largely based on explicit categories (rather than latent
embeddings) and the “go anonymous” posting option that users may choose. In contrast,
our work aims to understand the sensitivity of any latently represented topic, and provide
assessment for risk understood as topical exposure in a community.

Query log sanitization. This line of work tackles the challenge of an adversary using
session information to infer user identities from queries [Adar 2007]. A variety of techniques
have been proposed for anonymizing query logs, e.g., hashing tokens, removing identifiers,
deleting infrequent queries, shortening sessions, and more [Cooper 2008; Fan et al. 2014;
Hong et al. 2012; Korolova et al. 2009; Kumar et al. 2007]. Götz et al. [2012] compared
different methods for publishing frequent keywords, queries and clicks, and showed that
most methods are vulnerable to information leakage.

User-centric privacy. Stochastic privacy [Singla et al. 2014] is one of the few works
that focus on users rather than data. This model introduces a user-defined threshold for
sharing data to be obeyed by the platform provider. Closest in spirit to our approach is the
work of Biega et al. [2014], which uses probabilistic graphical models to infer sensitive user
properties, but is very limited in scope.

Linkability and de-anonymization. Privacy research for social networks has demon-
strated the feasibility of linking user profiles across different communities [Goga et al. 2013]
and de-anonymizing users [Narayanan et al. 2012; Narayanan and Shmatikov 2009; Zhang
et al. 2014]. To prevent such attacks, a family of methods eliminates joinable attributes
from published datasets [Vatsalan et al. 2013].

User behavior modeling. It has been shown that search queries can often be used to
predict identity of users, as well as their gender, location, and other demographic attributes
[Jones et al. 2007; Hu et al. 2007; Weber and Castillo 2010]. Such information can be
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harnessed for personalization but may also incur privacy threats. Pennacchiotti and Popescu
[2011] analyzed Twitter profiles and network information to predict the political affiliation
and race of users.

Expertise identification and trust analysis. Expert and trustworthy users can be
identified based on their questions/answers contents and community votes [Adamic et al.
2008] or by analyzing user interaction graphs [Jurczyk and Agichtein 2007; Zhang et al.
2007]. Unlike in these works, our aim is not to identify experts, but to push the users who
have a broad interest in a domain down the privacy risk ranking.

6.7 Conclusion
This chapter proposes a framework for quantifying privacy risks from textual contents of user
profiles in online communities. By employing IR techniques such as ranking and latent topic
models, it specifically addresses the risk of exposure with respect to sensitive topics and
targeting by a rational adversary with rich background knowledge about topic vocabulary
and word correlations.

Although more large scale studies of adversarial risk scoring strategies are needed, our
experiments constitute a proof of concept that the approach is a viable basis for privacy risk
assessment for users who want to post about sensitive topics but would like to be warned
when the risk of being targeted becomes high.

In the future, R-Susceptibility can be extended to incorporate other forms of online
activities, and be integrated in a framework for risk mitigation through appropriately guided
user actions. Our vision is a trusted personal privacy advisor which assesses risks, alerts the
user when critical situations arise, and guides her in appropriate countermeasures.
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Online service providers gather vast amounts of data to build user profiles. Such
profiles improve service quality through personalization, but may also intrude on
user privacy and incur discrimination risks. As the next contribution of the thesis,

we propose a framework which leverages solidarity in a large community to scramble user
interaction histories. While this is beneficial for anti-profiling, the potential downside is that
individual user utility, in terms of the quality of search results, may severely degrade. To
reconcile privacy and user utility and control their trade-off, we develop quantitative models
for these dimensions and effective strategies for assigning user queries to Mediator Accounts.
We demonstrate the viability of our framework by experiments using a querylog with rich
user profiles synthesized from the StackExchange Community Question Answering (CQA)
forum.
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7.1 Introduction
Motivation. Users are profiled and targeted in virtually every aspect of their digital lives:
when searching, browsing, shopping, or posting on social media. The gathered information
is used by service providers to personalize search results, customize ads, provide differential
pricing, and more [Hannak et al. 2013; Teevan et al. 2005]. Since such practices can greatly
intrude on an individual’s privacy, the goal of our research is to devise a mechanism to
counter such extensive profiling.

A careful user can largely preserve her privacy by taking measures like anonymizing
communication or using online services only in a non-linkable manner (for instance, by
changing accounts or pseudonyms on a regular basis). However, this comes at the cost of
greatly reducing utility, both for the service providers and the user. On the one hand, the
service provider will miss out on learning from the same user’s long-term behavior, which
may result in less effective systems. This issue of system-level utility has been studied in the
past research on privacy [Krause and Horvitz 2010; He et al. 2014]. On the other hand, the
individual user will experience degraded service quality, such as poor search results, as the
service provider would not understand the user’s interests and intentions. This notion of
user-level utility has not been extensively explored in prior work. This dissertation formalizes
the trade-off between a user’s profiling privacy and her individual utility.

State of the art and its limitations. Research in privacy has primarily addressed the
disclosure of critical properties in data publishing [Bertino et al. 2008; Chen et al. 2009;
Fung et al. 2010]. Common techniques include coarsening the data so that different users
become indistinguishable (e.g., k-anonymity [Sweeney 2002b], l-diversity [Machanavajjhala
et al. 2007], and t-closeness [Li et al. 2007]), or perturbing the answers of an algorithm so
that the absence or presence of any record does not significantly influence the output – the
principle of differential privacy [Dwork 2008]. These methods consider notions of utility that
reflect a system-level error in an analytical task, such as classification. In contrast, our goal
is to prevent detailed profiling and targeting while keeping the individual user utility as high
as possible, for example, in terms of the quality of personalized search results or product
recommendations.

For privacy-preserving search, many approaches have been proposed based on query
obfuscation [Gervais et al. 2014; Peddinti and Saxena 2014]. In these solutions, queries
are generalized to hide user intentions, or additional dummy queries are generated to
prevent accurate profiling. Both techniques come at the cost of largely reducing user utility.
However, none of the prior work addressed the trade-off between privacy and user utility in
a quantitative manner. A few methods [Chen et al. 2011; Peddinti and Saxena 2014] have
considered an entire user community as a means for query obfuscation. This idea is related
to our approach in this dissertation – we generalize it and make it applicable in the context
of anti-profiling.

Approach and contribution. Our approach to reconcile privacy and user utility builds
on the following observation: service providers often do not need a complete and accurate user
profile to return personalized results. Thus, in accordance with the need-to-know principle,
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we assign user requests to Mediator Accounts (MA) mimicking real users, such that (i)
individual user profiles are scrambled across MAs to counter profiling, while (ii) coherent
fragments of a user’s profile are kept intact in the MAs to keep user utility high. We call
this paradigm privacy through solidarity. Specifically, MAs are constructed by split-merge
assignment strategies: splitting the interaction history of a user and merging pieces of
different users together. Mediator Accounts are meant as an intermediate layer between
users and the service provider, so that the provider only sees MAs instead of the real users.

Ideas along these lines have been around in the prior literature [Reiter and Rubin 1998;
Santos et al. 2008; Xu et al. 2009; Goodrich et al. 2012; Rebollo-Monedero et al. 2012], but
the formalization of the trade-off between privacy and user-utility has never been worked
out. In particular, to make this idea viable, one needs to devise quantitative measures for
the effects of Mediator Accounts on privacy and utility. In addition, a strategy is needed for
assigning user requests to such accounts. The simplest approach of uniform randomization
would be ideal for privacy but could prove disastrous for user utility. This dissertation
addresses these challenges within a framework of Mediator Accounts. Our ideas are general
enough to be applied to search engines, recommender systems, and other online services
where personalization is based on the user interaction history. The salient contributions of
this chapter are:

• a model with measures for quantifying the trade-off between profiling privacy and user
utility;

• the Mediator Accounts framework together with strategies for assigning user interac-
tions to MAs;

• comprehensive experiments using a large query log derived from the StackExchange
CQA community.

7.2 Framework overview

7.2.1 Architecture

The architecture of the Mediator Accounts framework is shown in Fig. 7.1. It consists of
three parties: users, a service provider (SP), and a Mediator Accounts proxy (MA-proxy). A
user profile consists of a set of objects, such as queries, product ratings or other forms of
user interactions with the SP. Instead of issuing objects directly to the SP, users pass them
on to the MA-proxy together with some context information. The goal of the MA-proxy
is to redistribute the incoming objects on to mediator profiles mimicking real users. The
MA-proxy assigns each incoming object to a Mediator Account offering the right context for
the current object and user, and issues the object to the SP from the chosen MA. Upon
receiving a response (for example, a result page or a product recommendation) from the
SP, the MA-proxy passes it back to the user. When an interaction is over, the MA-proxy
discards all linking information about the original user and the object and remembers only
the association between the mediator account and the object. As a result, the original user
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Figure 7.1: Overview of the MA framework.

profiles are scrambled across multiple MAs, and each MA consists of data from multiple
users.

7.2.2 Incentives of participating parties

Users. The goal of a user participating in an MA system is to be able to get high-quality
personalized results, while not letting any online provider (neither SPs nor the MA-proxy)
keep her interaction history and link it to her as an individual. The MA-proxy has the user
interaction history scrambled across multiple accounts, and no links between the objects
and the real users are stored.

Users of anonymous services that do not offer topical personalization, such as the
DuckDuckGo, Startpage or Qwant search engines, may be open to trading off some privacy
for enhanced results through the MA framework.

Non-profiling service providers. The incentive of a non-profiling service provider
would be to enhance personalization in the results, without compromising on the non-
profiling principle.

Profiling service providers. A big question is whether profiling service providers would
allow a third-party like an MA-proxy to mediate between them and the users. While examples
of such third-parties already exist (the Startpage search engine uses Google as a source of
search results), we believe that (i) an MA-proxy being able to group objects into realistic
profiles that yield similar analytics results for the SP, and (ii) an MA-proxy being able to
attract privacy-wary users who would not otherwise use the profiling SP, would be viable
incentives for an SP not to block an MA service.
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MA-proxy. An MA-proxy could be set up by individuals, or cooperatives of non-profiling
SPs (to provide personalization without accumulating real user profiles), or by non-governmental
organizations that promote online privacy. The Electronic Frontier Foundation is such an
organization – a non-profit organization that has built privacy-preserving solutions like
Privacy Badger.

7.2.3 Trusted and adversarial parties

MA-proxy. Users opting for an MA service would need to trust that it scrambles their
profiles across mediator accounts, and discards the original profiles as well as any identifying
information once an interaction (a single request or a session) is complete. A standard
approach to gain such trust would be to make the MA solution open-source, enabling the
code to be vetted by the community. A real implementation of an MA framework would
have to take into account secure end-to-end communication channels between users and SPs
via the MA-proxy. These issues may be resolved using encryption and security techniques
(e.g., secure browser, onion routing, etc.), and are outside the scope of this thesis.

Provider. The service provider is not exactly distrusted, but there have been cases
where user-related information has been leaked or passed on beyond the original intentions –
by sabotage, acquisition by other companies, or enforcement by government agencies. By
detaching users from profiles and limiting their accuracy, the potential damage is bounded.

Other risks might result from service providers displaying privacy-sensitive personalized
ads, such as ads related to pregnancy or health issues, especially when observed by others
on a user’s screen. The architecture would allow an MA-proxy to support filtering ads and
adjusting them to users’ topical interest. Such a configuration has indeed been found to be
a preferable ad-serving setup in a user study [Agarwal et al. 2013]. Ad filtering, however, is
orthogonal to this research.

Third parties. Profiling companies that operate outside the user-provider connections
are considered untrusted. The same holds for agglomerates of providers that aggregate and
exchange user data. A conceivable attack could be to guess a user’s attribute (e.g., whether
she is pregnant) by combining (i) observations on the MAs and (ii) observations on a set
of accounts in a social network, using statistical inference methods. The MA framework
aims to keep such risks low by breaking observable associations between MAs and real users,
and limiting the profiling accuracy of the split-merge superpositions of different users that
cannot be easily disentangled.

7.3 Assignment model
The core of the MA framework is an algorithm for assigning user objects to Mediator
Accounts. To guide it on the privacy-utility trade-offs and to assess the quality of the output,
we need measures for quantifying the effect of an assignment on privacy and user utility.
This section presents such measures, and the algorithm for object assignment based on the
split-merge concept.
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7.3.1 Concepts and notation

We use the following notations:

• A set U of users u1 . . . up.

• A set O of objects o1 . . . os issued by users; the objects are treated as unique even if
they represent the same content. For instance, a query folk music issued by user
ui is treated as an object distinct from the same query issued by uj . Analogously, a
product rating for a book (Folk Music History, 3.0) by ui is distinct from the rating
by uj for the same book, irrespective of the rating value.

• A setM of mediator accountsm1 . . .mt to which objects are assigned by the MA-proxy.

We reserve the symbols i, j, k for subscripts of users, objects, and MAs. If user ui issues
object oj , we write oj ∈ ui. Similarly, if oj is assigned to MA mk, we write oj ∈ mk.

Assignments. An assignment of objects on to MAs can be denoted as an s× t matrix A
of 0-1 values, where Aij = 1 means that oi is assigned to mj . If we think of the Cartesian
product O × M as a bipartite graph, then the assignment can be conceptualized as a
subgraph S ⊆ O ×M where each node of type O has exactly one edge with one of the M
nodes.

7.3.2 Objective

In a real application, an MA-proxy has to assign objects to accounts in an online manner,
one object at a time as input arrives. In this chapter, we focus on analyzing the model
and assignments in an offline setting, although the algorithm we devise can be applied in
both offline and online scenarios. The offline case is useful for two reasons. First, it is a
foundation for understanding the underlying privacy-utility trade-offs. Second, performing
offline assignment on a set of initial user profiles can address the cold-start problem that a
new MA-proxy would face. Using the notation from Sec. 7.3.1, the MA offline assignment
problem can be defined as follows:

• Given a set of objects O belonging to a set of users U , and the set of mediator accounts
M , compute an assignment matrix A that optimizes a desired objective function for
the privacy-utility trade-off.

The MA online assignment problem is:

• Given an assignment A of past user objects to MAs and a newly arriving object o of
user u, find the best MA to which o should be assigned with regard to a desired goal
for the privacy-utility trade-off.

7.3.3 Measuring privacy gain

An ideal situation from the perspective of privacy is when the objects from a user profile are
spread across MAs uniformly at random – this minimizes the object-level similarity of any
MA to the original profile. We thus measure privacy as the entropy of the user distribution
over MAs, formalizing these notions as follows.
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Entropy. We introduce for each user ui an MA-per-user vector ~mui ∈ (N0)t with one
counter (≥ 0) per MA, written as ~mui = 〈xi1 . . . xij . . . xit〉 where xij is the number of
objects by user ui in account mj (such that

∑t
j=1 xij = |ui|). We can cast this into an MA-

per-user probability distribution Φi = 〈φi1 . . . φij . . . φit〉 by setting φij = xij/|ui| followed
by smoothing (e.g., Laplace smoothing) so that φij > 0 for each j and

∑t
j=1 φij = 1.

The degree of ui’s profile fragmentation can be captured by the entropy of the distribution
Φi. We can define the MA-per-user entropy as a measure of privacy gain (gain over having
each user exhibit her full individual profile):

privacy−gain(ui) = Hi = −
t∑

j=1
φij log φij (7.1)

This quantifies the spread of the user’s objects across accounts. The higher the entropy
value, the higher the gain in profiling privacy.

Profile overlap. If a use-case requires a more user-interpretable measure of privacy, an
alternative is to minimize the maximum profile overlap. For a user ui, this measure can be
expressed as:

Oi = tmax
j=1

|{o ∈ ui ∩mj}|
|ui|

(7.2)

This measure of overlap can directly tell a user how much “error” could be made by an
adversary, who assumes one of the MAs is the user’s profile. The optimum for this measure,
as with entropy, is achieved when the objects are uniformly spread across accounts. Thus, in
the following, we use entropy as our privacy measure, and leave maximum profile overlap as
a design alternative.

7.3.4 Measuring user utility loss

User utility loss measures to what extent an object ok of user ui is placed out of context by
mapping it to accountmj . We define a real-valued function sim(·, ·) to measure the coherence
of user and MA profiles: sim(oi, oj) ∈ [0, 1] is a symmetric measure of the relatedness between
objects represented by oi and oj . In practice, different notions of relatedness can be used,
based on object properties or usage. In settings where labels for topics or categories are
available, we can set sim(oi, oj) = 1 if oi and oj are issued by the same user and have the
same topic/category label, and 0 otherwise. Generally, we assume that sim measures are
normalized with values between 0 and 1.

The objects of user ui form a context, typically with high pairwise relatedness among the
objects. When considering sets of objects as a whole (rather than time-ordered sequences
of object posts), we can measure the normalized context coherence of an object ok in the
profile of user ui by:

coh(ok, ui) =
∑

ol∈ui,k 6=l sim(ok, ol)
|ui| − 1 (7.3)

When ok is placed in MA mj , we analogously define:

coh(ok,mj) =
∑

ol∈mj ,k 6=l sim(ok, ol)
|mj | − 1 (7.4)
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The utility loss of ui in a given MA assignment is then measured as an average coherence
loss over all user objects:

utility−loss(ui) =
∑

ok∈ui
[coh(ok, ui)− coh(ok,mj)]

|ui|
(7.5)

where mj is the account containing ok in the given assignment.
The normalization helps to account for varying sizes of user profiles. As a result, coherence

values are always between 0 and 1, and utility loss is normalized to take values between −1
and 1. Note that our utility measure assumes that the context coherence can increase if an
object is assigned to an MA with more similar objects. Coherence increase will result in
negative utility loss.

7.3.5 Assignment algorithms

The role of an assignment algorithm is to scramble user objects across accounts so as to
satisfy a desired privacy-utility tradeoff or optimize a corresponding objective function. In
this chapter, we experiment with a number of assignment algorithms and study their output
quality.

7.3.5.1 Optimal assignment (offline)

The trade-off can be expressed as a joint non-linear optimization problem as follows:

max
A

min
u

[α · privacy_gain(u)− (1− α) · utility_loss(u)] (7.6)

Alternatively, one could optimize one of the two measures with a constraint on the other.
Solving this problem exactly, however, is computationally expensive. If we use the less
complex overlap privacy measure, we could cast the problem into a Quadratic Integer
Program. However, this would have millions (|M | · |O|) of variables; so it would remain
intractable in practice. We thus do not pursue this direction in this dissertation and instead
consider a number of heuristics. The following are also suitable for the online case.

7.3.5.2 Profiling-tradeoff assignment

We aim to approximate the combined objective function as follows. Let o be an object we
want to assign to one of the accounts mj . If we want to optimize for privacy (i.e., entropy),
we should choose an MA at random from a uniform distribution over MAs:

Ppriv(mj |o) = 1
|M |

(7.7)

If we want to optimize for utility, we could choose an MA that offers the best coherence:

Putil(mj |o) =

1, if mj = mmax

0, otherwise
(7.8)

where mmax = arg maxmk
coh(o,mk).



7.4. Mediator accounts in search systems 105

Let α be a parameter that controls the trade-off between privacy and utility. We sample
an MA according to the distribution:

P (mj |o) = α · Ppriv(mj |o) + (1− α) · Putil(mj |o) (7.9)

In the offline case, we may choose an arbitrary order of objects to feed into this assignment
heuristic. In the online case, we process objects ordered by the timestamps in which they
are issued to the MA-proxy. It is also worth noting that in an online setting users could
choose different α for each object, deciding that some should be assigned randomly, and
some with the best possible context.

7.3.5.3 Random assignment

In this assignment, objects are assigned to accounts uniformly at random. This is a special
case of the Profiling-tradeoff algorithm with α = 1. This assignment maximizes privacy.

7.3.5.4 Coherent assignment

Personalization is usually based on semantically coherent parts of user profiles. If we retain
such coherent fragments of a profile within the accounts, individual utility should be preserved
better than in a completely random assignment. The mode in which we assign an object to
the account that offers the best coherence is a special case of the Profiling-tradeoff algorithm,
in which we set α = 0. We refer to this method as Coherent. This assignment explicitly aims
for the best utility only, yet some privacy is gained as chunks of user profiles get assigned to
MAs randomly.

7.4 Mediator accounts in search systems
By analyzing query-and-click logs, search engines can customize results to individual users.
Such user profiling, however, may reveal a detailed picture of a person’s life, posing potential
privacy risks. At the same time, personalization of a single query is often based on only a
subset of a user’s history. Thus, as a first use case, we apply the MA framework in a search
engine setting, scrambling the query histories of different users across accounts.

7.4.1 Framework elements

In the search scenario, the elements of the framework described in Sec. 7.3 are instantiated
as follows. The objects are keyword queries, and user profiles consist of sets (or sequences)
of queries, possibly with timestamps. Accounts contain re-assigned queries of different users.
Object similarity can be understood as topical similarity between queries, with topics being
either explicit such as categories or classifier labels, or latent, based on embeddings. As a
query is characterized by a set (or weight vector) of topics, the similarity can be computed,
for instance, using (weighted) Jaccard overlap or vector cosine. The service provider in this
setting is a search engine, which, upon receiving a query from a given user profile, returns a
ranked list of documents personalized for that user. User utility is measured by the quality
of the result list.
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7.4.2 Service provider model

The ability of the MA framework to preserve utility while splitting user profiles across
accounts depends on a retrieval model for ranking query answers. We use the language-
model-based retrieval technique [Croft et al. 2009], as described below.

Let o ∈ u be a query of user u consisting of a number of words w ∈ o, and D be the
document collection. The model retrieves the results in two steps. First, it fetches a set of
top-k documents Do ⊆ D, each document d ∈ D being scored by the query-likelihood model
with Dirichlet smoothing (parameter µD [Croft et al. 2009]):

score(o, d) = logP (o|d) =
∑
w∈o

log
(
tfw,d + µD · P (w|D)

|Vd|+ µD

)
(7.10)

where tfw,d is the count of w in d, P (w|D) is the probability that w occurs in D, and |Vd|
is the count of all words in d. For every user u, we compute a personalization score as the
log-probability of the document d being generated from the user language model using
Dirichlet smoothing with parameter µU , where U is the set of all users (or equivalently, the
collection of their search histories):

score(d, u) = logP (d|u) =
∑
w∈d

log
(
tfw,u + µU · P (w|d)

|Vu|+ µU

)
(7.11)

where tfw,u is the count of w in the search history of u, P (w|d) is the probability that w
occurs in d, and |Vu| is the count of all words in the search history of u.

In the second step, documents d ∈ Do are re-ranked using a linear combination of the
two scores:

scoreu(o, d) = γ · score(o, d) + (1− γ) · score(d, u) (7.12)

In practice, γ would be set to a low value to put more importance on personalization.
When we use the MA framework, the computations are similar. The notion of a user

is simply replaced by an account m. The personalization stage is adjusted as follows: we
compute score(d,m) using P (d|m), which in turn is computed using tfw,m, µM and |Vm|
with Eq. 7.11. Definitions of these quantities are analogous to their user counterparts.

7.5 Experiments

7.5.1 Experimental setup

7.5.1.1 Dataset

For lack of publicly available query logs with user profiles, we created a query log and a
document collection using the data from the Stack Exchange Q&A community (dump as of
13-06-2016). We excluded the large software subforums from outside the Stack Exchange
web domain (such as StackOverflow), as they would dominate and drastically reduce the
topical diversity. The final dataset consists of ca. 6M posts of type ‘Question’ or ‘Answer’
in 142 diverse subforums (e.g., Astronomy, Security, Christianity, Politics, Parenting, and
Travel).
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Document collection. We use all posts of type ‘Answer’ as our collection. The resulting
corpus contains 3.9M documents.

User query histories. We construct a query log from posts of type ‘Question’, as these
reflect users’ information needs. Each question is cast into a keyword query selecting the
top-l question words with the highest TF-IDF scores, where l is a random integer between 1
and 5. We consider only users with at least 150 questions, which yields a total of 975 users
and 253K queries. Each query is assigned a topical label, used for object similarity. We set
this label to the subforum where the original question was posted.

7.5.1.2 Service provider

For reproducible experiments, we base our search engine model on the open-source IR
system Indri [Strohman et al. 2005]. Indri ranks query answers based on state-of-the-art
statistical language models with Dirichlet smoothing [Croft et al. 2009]. We use Indri to
retrieve the top-100 results for every query from the entire corpus, and implement user-
personalized re-ranking ourselves (see Sec. 7.4.2). We compute per-user language models
from the original questions to tackle sparsity. The Dirichlet smoothing parameter is set to
the average document length (56 words), and γ is set to 0.1.

7.5.1.3 Empirical measures

Privacy Gain. The model entropy reflects how scrambled the user profiles are. Yet from
the perspective of a profiling adversary it is rather the distribution over semantic topics that
matters. Empirically, a proper way to measure privacy then is to compare the original topic
distribution per user against the topic distributions of the MAs. The minimum KL-divergence
between pairs of these distributions signifies the privacy level:

emp−priv−gain(ui) = min
mj∈M

DKL(Pui ‖ Qmj ) (7.13)

where Pui and Qmj refer to the user and MA profile distributions over topics with add-one
Laplace smoothing. We use subforums as explicit labels for topics.

Utility Loss. Rankings of documents d for a query are derived from scoreu(o, d) and
scorem(o, d) (Eq. 7.12), respectively, where the former refers to the query being issued by
user u and the latter to the query being issued by the mediator account m (see Sec. 7.4.2).
We quantify the empirical utility loss as the divergence between the two rankings. We
compute two measures: the loss in Kendall’s Tau over the top-100 document rankings:
1 − KTau@100 (as the personalization step considers the top-100 documents), and the
loss in Jaccard similarity coefficient over the first 20 ranking positions: 1 − Jaccard@20
(as end-users typically care only about a short prefix of ranked results). For each user, we
average these scores over all queries.
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α M-Priv-Gain M-Util-Loss E-Priv-Gain E-Util-Loss
(Entropy) (Coherence Loss) (Min. KL-div.) (1 - KTau@100)

Original 0.000 0.000 0.000 0.000

0.0 (Coh) 1.180 0.178 0.320 0.170
0.2 2.208 0.293 0.319 0.203
0.4 3.130 0.389 0.346 0.228
0.6 3.975 0.463 0.389 0.246
0.8 4.731 0.515 0.494 0.260

1.0 (Rand) 5.287 0.535 0.863 0.266

Table 7.1: Results with trade-off parameter α for the model (M) and empirical (E) measures.

7.5.1.4 Assignment methods

Object similarity. We set sim(oi, oj) = 1 if both oi and oj belong to the same user and
to the same topic, and 0 otherwise. During the assignment, this measure helps to keep
related parts of a user profile together.

Assignment algorithms. We run the Profiling-Tradeoff algorithm varying α between 0
and 1 with a 0.1 increment, and setting the number of MAs to be the number of users (975).
With the chosen object similarity, the special case of α = 0, i.e. the Coherent assignment,
results in splitting user profiles into subforum chunks and assigning each chunk to a randomly
chosen account.

7.5.2 Results and insights

Aggregate trends. Table 7.1 presents the results on the model measures and empirical
measures for different values of the assignment trade-off parameter, macro-averaged over
users. Recall that α = 0.0 and α = 1.0 correspond to the special cases of Coherent and
Random assignments, respectively. These results need to be contrasted with the baseline,
denoted Original in the table, where each original user forms exactly one account (i.e., no
scrambling at all). Compared to the baseline, all numbers are statistically significant by
paired t-tests with p < 0.01. For empirical utility loss, we report Kendall’s Tau; the results
for the Jaccard coefficient are similar.

The results show that the Profiling-Tradeoff assignments improve privacy over the
Original baseline (the topical KL-div. between original users and MAs is increased) while
keeping the utility loss low. This is largely true regardless of the exact choice of α. So the
MA framework provides a fairly robust solution to reconciling privacy and utility, supporting
the observation that high-quality topical personalization does not require complete user
profiles.
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Figure 7.2: Model measures per user.

With the α increasing, assignments become more random, so the privacy increases and
utility is reduced (but with a low gradient). In this regard, the empirical measures reflect
the expected behavior according to the model measures well.

Results per user. Figs. 7.2 and 7.3 show privacy and utility values of each user, for the
model and empirical measures, respectively. Different colors represent different assignments,
and each dot represents a user, with measures averaged over the user’s queries. We have
several observations:

• Higher privacy gain is correlated with higher utility loss. The Original assignment maps
each user to the origin (0 utility loss, but also 0 privacy gain). No assignment reaches
the bottom-right area of the chart – which would be an ideal.

• Varying α not only tunes the privacy-utility tradeoff at the community aggregate level,
but also affects the variance over individual user scores. This suggests that we should
further explore choosing α on an individual per-user basis (which is easily feasible in our
framework, but is not studied in this thesis).

• Even the Random assignment (α = 1.0) keeps utility reasonably high. This is due to
the fact that random MAs – sampled from queries in the community – end up being
averaged rather than random profiles.
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Figure 7.3: Empirical measures per user.

• Some users achieve high privacy gains without losing hardly any utility, and vice versa.
We investigate this further below.

Effect of profile size and diversity. We analyze how different user profile characteristics
affect the assignment results. Figure 7.4 presents the empirical trade-offs for the Coherent
(top row) and Random (bottom row) assignments, where each dot is a user and the dot
color represents (i) the logarithm of the number of queries in the user profile (left column),
or (ii) the diversity of the profile measured by the entropy of the distribution of queries
across topics (right column). We make the following observations:

• Users with more queries (darker dots) in the Coherent assignment clearly gain privacy
at the cost of losing utility, whereas for the smaller profiles (lighter dots), the trade-off
is not as pronounced. In the Random assignment this trade-off is less pronounced
irrespective of the size of the profile.

• In the right column, one can see the lighter dots (profiles with little diversity) moving
from the bottom-left for the Coherent assignment (little privacy gain, little utility loss)
to the top-right for the Random assignment (higher privacy gain, higher utility loss).
This suggests that our framework does not offer much help to the users with uniform
and focused interests. This is an inherent limitation, regardless of which privacy
protection is chosen. Such homogeneous users cannot hide their specific interests,
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Figure 7.4: Effect of profile size and diversity.

unless they give up on personalization utility.

• Our split-merge assignments offer good results for users with high diversity. As
suggested by the darker dots, the Coherent assignment leads to a lower utility loss
and higher privacy gain for users with diverse profiles, when compared to the Random
assignment. This is because such users have more independent and internally coherent
chunks that can be split without affecting utility. This class of users is exactly where the
right balance of utility and privacy matters most, and where we can indeed reconcile
the two dimensions to a fair degree.

7.6 Related work

Grouping for privacy. The idea of masking the traces of individual users by combining
them into groups has been around since the Crowds proposal by Reiter and Rubin [1998].
However, this early work solely focused on anonymity of web-server requests. Narayanan and
Shmatikov [2005] devised an abstract framework for group privacy over obfuscated databases,
but did not address utility. For search engines specifically, Jones et al. [2008] proposed
a notion of query bundles as an implicit grouping of users, but focused on countering
de-anonymization in the presence of so-called vanity queries. The short paper by Zhu et al.
[2010] sketches a preliminary approach where semantically similar queries by different users
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are grouped for enhancing privacy. Aggregation of users’ website-specific privacy preferences
through a centralized server [Yu et al. 2016], can also be perceived as a type of privacy through
solidarity. The principle of solidarity has moreover been explored through a game-theoretic
framework over recommender systems [Halkidi and Koutsopoulos 2011].

Tracking and profiling. A good body of work investigates to what extent and how users
are tracked by third parties in web browsers [Lerner et al. 2016; Meng et al. 2016b; Yu et al.
2016], or through mobile apps [Meng et al. 2016a]. These are primarily empirical studies
with an emphasis on identifying the tracking mechanisms. The interactions with service
providers, where users log in and leave extensive traces, have been largely disregarded. In
contrast, our framework helps counter both tracking and individual profiling by detaching
users from online accounts.

To reduce the scale of profiling, a model called stochastic privacy has been proposed
to selectively sample user profiles for use by personalizing algorithms [Singla et al. 2014].
To counter profiling by search engines in particular, Xu et al. [2007] has proposed to issue
queries anonymously, but provide the engine with a coarse topical profile for answer quality.
On the tracking front, the Non-Tracking Web Analytics system reconciles users’ need of
privacy and online providers’ need of accurate analytics [Akkus et al. 2012]. Although these
various works address the privacy-utility trade-off, no explicit control mechanism has been
proposed for user utility.

Privacy-preserving IR. The intersection of privacy and IR has received some attention
in the past years [Yang et al. 2016]. One of the key problems studied in the field is that of
post-hoc log sanitization for data publishing [Cooper 2008; Götz et al. 2012; Zhang et al.
2016a]. Online sanitization, on the other hand, aims at proactively perturbing and blurring
user profiles. Techniques along these lines typically include query broadening or dummy
query generation [Shen et al. 2007; Balsa et al. 2012; Peddinti and Saxena 2014; Wang and
Ravishankar 2014]. It has also been proposed to perturb user profiles by making users swap
queries and execute them on behalf of each other [Rebollo-Monedero et al. 2012]. Very few
of these prior works consider the adverse impact that obfuscation has on utility, and the
usual focus is on the utility of single query results. To the best of our knowledge, none of
them focuses on personalization utility or offers quantitative measures for the trade-off.

Another privacy concept studied in IR is that of exposure. Recently, the notions of
R-Susceptibility and topical sensitivity have been proposed to quantify user exposure in
sensitive contexts within a given community [Biega et al. 2016].

Privacy-preserving data mining. There is a vast body of literature on preserving pri-
vacy in mining data for rules and patterns and learning classifiers and clustering models [Fan
et al. 2014; Aggarwal 2015]. In this context, utility is measured from the provider’s perspec-
tive, typically an error measure of the mining task at hand (e.g., classification error) [Bertino
et al. 2008]. In the context of recommender systems, rating prediction accuracy [McSherry
and Mironov 2009; Nikolaenko et al. 2013] and category aggregates [Shen and Jin 2016] are
typically used as proxies for utility. Techniques for user profile perturbation have also been
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studied for utility-preserving differentially-private recommeders [Guerraoui et al. 2015].

7.7 Conclusion
We presented Mediator Accounts (MAs): a framework to counter user profiling while
preserving individual user utility as much as possible. The framework enables decoupling
users from accounts, making direct targeting impossible, and profile reconstruction or
de-anonymization much harder. At the same time, users are still able to benefit from
personalization by service providers. The versatility of the framework has been demonstrated
in experiments using a large query log synthesized from the StackExchange platform. While
the application of the framework to recommeder systems is not a contribution of this thesis,
Biega et al. [2017b] have additionally demonstrated the applicability of the framework in
that scenario.

While our model allows for flexible trade-offs between privacy and utility, a key question
in our empirical study has been to understand how well the MAs can preserve the utility in
terms of high-quality search results. The experiments show that the split-merge approach
with Coherent assignment improves the privacy, while incurring little user utility loss. These
benefits are most pronounced for users with larger profiles (i.e., more activity) and higher
diversity of interests. Open issues for future work include practical deployment, handling
of other personalization features, and exploring the options for tuning assignments and
framework parameters to the specific needs of individual users. On top of that, analyzing
the three-dimensional trade-off between user privacy, user utility and the traditional service
provider utility could help ensure that the resulting mediator profiles are a useful source for
user analytics, making an MA proxy a tolerable component of the online landscape.

Finally, we would hope that the MA proposal stirs up the investigation of how the
need-to-know principle could be implemented in case of personalized online services.





Chapter 8

Conclusions and Outlook

This thesis broadly investigates privacy and fairness problems of search system users,
including both searchers and searched subjects. The models we propose together
with the experimental results suggest that there is scope for search systems to

provide better experience for their users in terms of privacy and fairness, without the need
to sacrifice much of the search utility. The results from Chapter 4 show that systems could
provide more equitable exposure to search subjects without much reduction in ranking utility,
especially since in many existing scenarios there are numerous subjects who are equally
relevant to various queries. Chapters 5 and 6 exemplify how systems could provide their
users with more privacy awareness by computing queries which expose users in search results.
Annotators in our user studies found exposure by topically sensitive queries to be especially
problematic, while media reports about privacy breaches in search engines highlight the
problems with exposure by unique queries. Finally, Chapter 7 shows that search engines
do not need to accumulate rich query histories per user to deliver quality personalization,
particularly for users with topically diverse profiles and interests. Going forward, there are a
number of fascinating questions that need to be answered to design privacy-friendly and fair
search engines.

Fair exposure. To create holistically fair systems, we need to gain a deeper understanding
of the intrinsic properties of ranking and human relevance feedback mechanisms that might
lead to bias and unfairness. Moreover, the existence of position bias calls for redesigning
display interfaces to try to minimize the biasing effects of visual ranking perceptions in
applications such as people search. Beyond exposure measured through ranking position,
interface design and the results of people search should also be examined for representational
harms. It might be possible, for instance, that various demographic groups have different
information highlighted in the snippets on the search results. To aid the algorithm and
system design, inspired by social comparison effects, we should also better understand human
perceptions regarding the fairness of their positions in ranking.

Sensitive exposure. To mitigate the consequences of exposure without reducing the
utility of the systems, topical sensitivity and search exposure relevance should be contex-
tualized. To this end, we need to better understand which textual contents are sensitive
for which types of users in which situations. On the mechanism side, developing external
black-box methods for auditing search exposure is an important complement to existing
privacy support methods, as well as a means of incentivizing service providers to develop
more comprehensive internal tools. Beyond user perceptions, it is also vital to develop
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expert understanding of the risks, studying the consequences of exposure by different types
of queries and proposing reasonable mitigation solutions beyond awareness. Last but not
least, to be able to tangibly raise awareness of these problems, we should investigate user
perceptions regarding search exposure, as well as user understanding of the underlying
mechanisms and coping strategies.

Minimizing profiling. Our results revealed that often only a fraction of a user’s inter-
action history is needed to deliver quality personalization. We can turn this observation
around to arrive at a more general question: What is the minimum amount of information
needed to maintain personalization quality? To answer this question, more work is needed to
define generalized framework-independent notions of profiling privacy and user utility, and
inspect the interplay between user utility and system utility. Moreover, not less important is
understanding which solutions would provide enough incentives for service providers to be
adopted and to what extent users would be willing to trade some personalization utility for
more privacy.

Infrastructure supporting research in privacy and fairness. Ironically, developing
solutions for user privacy and fairness often requires access to user data or even users
themselves if privacy and fairness-related annotations from the data owners are necessary.
While more readily available in the industry, access to real user data is limited for academic
researchers. Developing infrastructure for research in privacy and fairness is thus a crucial
factor fostering progress in these areas. Such infrastructure includes, for instance, protocols
and data sanitization algorithms for data release, methods for synthesizing realistic data (this
thesis contributes to such infrastructure by creating a synthetic query log), and providing
data in shared benchmarks.

We envision search engines that serve their users equitably, that offer support mechanisms
for their users to understand and control the use of their data and their exposure in the
search results, and that collect the minimum amount of data necessary to deliver the service.



Appendix A

AMT User Study: Topical
Sensitivity

This appendix documents the details of the Amazon Mechanical Turk1 user study
described in Chapter 6, Section 6.4.1. The goal of the study was to collect judgments
on privacy sensitivity of different topics in a topic model (topic models were trained

using Mallet [McCallum 2002]). Each topic was represented by its 20 most salient words,
that is, the words with the highest probability from the topic.

Setup details:

• Title: A survey about sensitivity of words in online posts (WARNING: This HIT may
contain adult content. Worker discretion is advised.)

• Description: We’d like to collect your judments on how privacy-sensitive different
sets of words might be when used in online posts.

• Keywords: online posts, sensitive words, privacy, sensitivity of topics

• Reward per assignment: $2

• Number of assigments per HIT: 7

• Time alloted per assignment: 90 minutes

• Master workers: Yes

• HIT Approval Rate for all Requester’s HITs: >= 90%

• Location: is United States

• Number of HITs Approved: >= 100

Instructions: In this task, we want to collect your judgements on whether you would
consider public posts on social media (e.g., Facebook or Twitter or blog) containing certain
sets of words to be potentially “privacy sensitive“. We consider the usage of a set of words
to be privacy sensitive if any of the following is true:

• A person is likely to use these words because they are in a situation that is privacy-
sensitive. For example, if you use words related to diseases it might mean you are sick,
which is a privacy-sensitive situation.

1https://www.mturk.com/

https://www.mturk.com/
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• The usage of these words might create a privacy-sensitive situation or some problems.
For example, if you use vocabulary indicating your religious views, the information
might easily be used against you, leading to a violation of privacy.

Additionally, for each set of words, please choose a best suiting thematic domain.

Question: Each HIT consisted of 50 sets of questions of the following form:

1. Do you think a post in social media containing these words can be privacy-sensitive?
(Yes/No)
20 most salient words from the topic were displayed here

2. What thematic domain do these words come from?
(Law and Politics, Humanities, Psychiatry and Psychology, Health and Medicine, Economy
and Finance, Other)



Appendix B

AMT User Study: Search
Exposure

This appendix documents the details of the Amazon Mechanical Turk1 user study
described in Chapter 5, Section 5.5.4. The goal of the study was to collect judgments
on the search exposure relevance of different queries (more privacy-critical queries

have higher search exposure relevance.)

Setup details:

• Title: A study of profile exposure through keyword search (WARNING: This HIT
may contain adult content. Worker discretion is advised.)

• Description: We’d like to collect your opinions regarding sensitivity of different
search terms on Twitter.

• Keywords: exposure of tweets, keyword search

• Masters has been granted : Yes

• Qualification Requirement: HIT Approval Rate (%) for all Requesters’ HITs
greater than or equal to 95

• Location: is United States

• Number of HITs Approved: >= 100

Instructions, queries only: Websites like Twitter offer their users the option to search
for tweets using keyword queries (= sets of words). Upon entering the keywords, you receive
a ranked list of tweets that somehow match these keywords as a response.

Assume for now you are a Twitter user with a number of tweets in your profile. Even
though these tweets are public, they are usually exposed just to your followers. But if it turns
out that one of your tweets is returned as a top-ranked result in response to these keyword
queries, your tweet (and profile) will be exposed to whoever issues these keywords. There
is a variety of people who might be looking for user profiles or tweets that match certain
keywords. Examples include journalists looking for examples to their stories, companies
building databases of people for different purposes, or even criminals looking for victims.

1https://www.mturk.com/

https://www.mturk.com/
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In this survey, we will ask for your opinions regarding sensitivity of different keyword
queries in the above context. More specifically, we will show you a number of keyword
queries and ask whether you would feel concerned (e.g., uncomfortable, embarrassed, privacy-
violated, or threatened) if your tweet was returned as one of the top answers to these search
terms.

Question, queries only: Would you feel concerned (uncomfortable, embarrassed, privacy-
violated, or threatened) if your tweet was returned as one of the top answers to these search
terms? Please, try to choose ’Yes’ for at least 10-12 search terms you would feel most
uncomfortable with, although you are also free to choose more.

Search terms: XXX

(Yes/No)

Instructions, queries+tweets: Websites like Twitter offer their users the option to
search for tweets using keyword queries (= sets of words). Upon entering the keywords, you
receive a ranked list of tweets that somehow match these keywords as a response.

Assume for now you are a Twitter user with a number of tweets in your profile. Even
though these tweets are public, they are usually exposed just to your followers. But if it turns
out that one of your tweets is returned as a top-ranked result in response to these keyword
queries, your tweet (and profile) will be exposed to whoever issues these keywords. There
is a variety of people who might be looking for user profiles or tweets that match certain
keywords. Examples include journalists looking for examples to their stories, companies
building databases of people for different purposes, or even criminals looking for victims.

In this survey, we will ask for your opinions regarding sensitivity of different keyword
queries in the above context. More specifically, we will show you a number of search
terms together with the tweets that are returned as top results for these terms. The
question is: in your opinion, should a user be concerned (uncomfortable, embarrassed,
privacy-violated, or threatened) if the tweet was returned as one of the top answers to the
search terms?

Question, queries only: In your opinion, should a user be concerned (uncomfortable,
embarrassed, privacy-violated, or threatened) if their tweet below was returned as one of
the top answers to these search terms? Please, try to choose ’Yes’ for at least 10-12 search
terms you would feel most uncomfortable with, although you are also free to choose more.

Search terms: XXX

(Yes/No)
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