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ABSTRACT
Article 5(1)(c) of the European Union’s General Data Protection

Regulation (GDPR) requires that "personal data shall be [...] ade-

quate, relevant, and limited to what is necessary in relation to the

purposes for which they are processed (‘data minimisation’)". To

date, the legal and computational definitions of ‘purpose limitation’

and ‘data minimization’ remain largely unclear. In particular, the

interpretation of these principles is an open issue for information

access systems that optimize for user experience through personal-

ization and do not strictly require personal data collection for the

delivery of basic service.

In this paper, we identify a lack of a homogeneous interpretation

of the data minimization principle and explore two operational

definitions applicable in the context of personalization. The focus

of our empirical study in the domain of recommender systems

is on providing foundational insights about the (i) feasibility of

different data minimization definitions, (ii) robustness of different

recommendation algorithms to minimization, and (iii) performance

of different minimization strategies.We find that the performance

decrease incurred by data minimization might not be substantial,

but that it might disparately impact different users—a finding which

has implications for the viability of different formal minimization

definitions. Overall, our analysis uncovers the complexities of the

data minimization problem in the context of personalization and

maps the remaining computational and regulatory challenges.
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1 INTRODUCTION
Personalized services such as recommender systems or search en-

gines collect large amounts of user interaction logs. Such data

collection practice is widely accepted to be necessary for platforms

to build high-quality models [18, 37]. However, some prior work

shows that exact user interaction profiles are not necessary to tailor

the results of search or recommendations. For instance, Singla et
al. show that it is possible to personalize results while storing a

reduced user interaction history [34], while Biega et al. show that

it is possible to shuffle user queries and ratings while preserving

the quality of personalized search and recommendations [2].

If results can be personalized without exact user profiles, it is

pertinent to ask: How much information and what information does
an individual need to provide to receive quality personalized results?
Note the parallel between this question and the principle of data
minimization defined in Article 5 of the European Union’s General

Data Protection Regulation (GDPR) [33] as well as data protection

regimes in other jurisdictions, which requires that a system only

retain user data necessary to deliver service. The core idea we

explore in this work is whether the principles of purpose limitation

and data minimization can be complied with in the context of

personalization and what minimizing data in this context entails.

In contrast to other GDPR concepts, such as the right to be for-
gotten or informed consent, there is to date only marginal regulatory

and judicial guidance on the interpretation of data minimization.

Reasoning about data minimization has largely been confined to

setups involving immutable or relatively stationary user character-

istics. For instance, examples mentioned in the guidelines issued

by the UK’s Information Commissioner’s Office [31] discuss sce-

narios of collecting people’s names by debt collectors, or employee

blood types by employers. More recent regulatory guidelines and

industrial practice, however, recognize the multitude of challenges

related to minimization in data-intensive applications [3, 13].

To the best of our knowledge, this work is the first to operational-

ize the legal concepts of purpose limitation and data minimization

in a scenario where user data collection is not strictly necessary to
deliver a service, but where the collection of such data might improve
service quality. We tie the purpose of data collection to performance

metrics, and define performance-based minimization principles.
In this study, we investigate two possible technical definitions

of performance-based data minimization. The first interpretation,

which we refer to as global data minimization, minimizes per-user

data collection subject to meeting a target mean performance across

users. This aligns well with standard empirical risk minimization

https://doi.org/10.1145/3397271.3401034
https://doi.org/10.1145/3397271.3401034
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approaches in machine learning [41]. Alternatively, per-user data
minimization minimizes per-user data collection subject to each

user meeting a target performance. Equivalently, this aligns with

meeting a target performance for the minimum across all users.

We use these interpretations to compare different minimization

strategies for personalized recommendations. We demonstrate that

quality recommendations can be provided while collecting substan-

tially less user data. However, we also find that the appropriate

minimization strategy is sensitive to the base recommendation algo-

rithm used. While our results suggest that systems should be able to

achieve global data minimization, we demonstrate that preserving

the average performance conceals substantial impact for individual

users. To sum up, the salient contributions of this paper are:

• Identifying a lack of a homogeneous interpretation of the GDPR’s

purpose limitation and data minimization principles in the con-

text of personalization systems and proposing a computational

definition of performance-based data minimization.
• An analysis of the feasibility of two different data minimization

definitions in the domain of recommender systems.

• An analysis of the robustness of different recommendation algo-

rithms to various minimization strategies, both on a population

as well as an individual user levels.

2 DATA MINIMIZATION
2.1 A legal perspective
Article 5(1)(c) GDPR requires that personal data be ‘adequate, rele-
vant and limited to what is necessary in relation to the purposes for
which they are processed.’ Data minimisation is the direct conse-

quence of the legal principle of purpose limitation, which requires

that personal data only be processed for specified, explicit and legit-

imate purposes and not further processed in a manner incompatible

with these purposes. While these core data protection principles

cannot be examined exhaustively here, it is worth noting that gen-

eral statements such as ‘improving user experience’ are generally

not specific enough to meet the legal threshold of purpose limita-

tion. This raises the question of whether ‘personalization’can be a

purpose under the GDPR at all.

According to data minimisation, no more personal data than

necessary to achieve the purpose can be processed. The first ques-

tion to ask is thus whether data such as this studied in our paper is

personal data. The Article 4 GDPR embraces a very broad definition

of personal data as ‘any information relating to an identified or

identifiable natural person.’In the past, movie ratings such as those

in the MovieLens 20M dataset [19] have been shown to allow for

identification through linking of private and public datasets [29]. It

is thus safe to assume that much of the data used in recommender

systems, such as movie ratings, constitutes personal data and is

hence subject to the GDPR (where within its geographical scope).

Data minimisation can be broken down into three distinct re-

quirements. First, data must be adequate in relation to the purpose

that is pursued. Arguably, adequacy is the most interesting of the

three criteria as it may actually (and somewhat counterintuitively)

require that more data is processed. It is well established that the

omission of certain data can limit the usefulness of a dataset and

the accuracy of an analysis done on that dataset. As such, to achieve

accurate results, more data may need to be collected. Data minimisa-

tion indeed ought to be interpreted in light of the other substantive

requirements in Article 5 GDPR such as fairness, transparency

and accuracy and there are scenarios, often those involving under-

represented groups, where this can only be achieved through the

processing of more personal data.

Second, data ought to be relevant in light of the purpose, meaning

that only data that is pertinent for the purpose can be processed. For

example, if an e-commerce provider requested users’ date of birth to

provide personalised recommendations regarding future purchases,

this data is unlikely to be relevant (except where recommendations

have an astrological flavor). Relevance thus functions as a safeguard

against accumulating data simply for the sake of doing so.

Third, the GDPR requires that data be limited to what is nec-

essary, meaning that controllers ought to identify the minimum

amount of personal data required to fulfil the stated purpose. Thus,

where similarly robust results can be achieved through the pro-

cessing of less personal data, the processing of personal data can

likely not be accepted as being necessary. Where possible, only

anonymised data should be used. However, given the practical lim-

itations of achieving anonymisation, the latter cannot be assumed

as a viable alternative to minimisation in many contexts [10].

2.2 Performance-Based Data Minimization
Our focus in this paper is on operationalizing the third requirement

of data minimization, namely that of limitation. According to the

legal considerations detailed in the previous subsection, generic

statements such as ‘improving user experience’ are not specific

enough to be used as a purpose of data collection. Thus, we propose

to reason about data minimization by tying the purpose to perfor-
mance metrics. While there are manyways in which this proposition

might be operationalized, in this paper, we begin investigating this

space with an empirical study of two definitions.

Let U be a set of users for whom the system needs to minimize

the data and let I be the set of items that a system can recommend.

Each user has rated some subset Iu ⊆ I of items. Let ru be the

|I | × 1 vector of ratings for these items. Of the rated items in Iu ,

in a minimization setting, the system only sees a subset
˜Iu ⊆ Iu ,

referred to as the observational pool for useru. Let r̂u be the ratings

for these observations. Given r̂u , a system generates r̃u , its predicted
ratings for u. The quality metric for u is defined as σ (r̃u ).

Definition 1 (Global data minimization). A system satisfies
global data minimization if it minimizes the amount of per-user data
while achieving the quality of a system with access to the full data
on average,
min k s.t. ∀u, | ˜Iu | = k and EU [σ (r̃ ′u )] − EU [σ (r̃u )] ≤ λ

where r̃ ′ is the prediction using the ratings in Iu and λ is a threshold
difference in the expected per-user performance.

Definition 2 (Per-user data minimization). A system satisfies
per-user data minimization if it minimizes the amount of per-user
data while achieving the quality of a system with access to the full
data for each user,

min k s.t. ∀u, | ˜Iu | = k and ∀u,σ (r̃ ′u ) − σ (r̃u ) ≤ λ

where r̃ ′ is the prediction using the ratings in Iu and λ is a threshold
difference in the per-user performance.



Operationalizing the Legal Principle of Data Minimization for Personalization SIGIR ’20, July 25–30, 2020, Virtual Event, China

3 EXPERIMENTAL SETUP
3.1 Datasets
We run our analyses using (1) the MovieLens 20M dataset [19]

and (2) the Google Location dataset [20]. Because of the space con-

straints, we report the results using dataset (1), and use dataset (2)

for validation, reporting differences in observations where appli-

cable. To properly reason about data minimization, we only select

users who have at least 45 ratings in their profile. For efficiency

reasons, we further subsample the users, creating (1) a MovieLens

dataset containing around 2.5k users, 170k ratings, and 20k unique

movies; the mean and median number of ratings in a user profile

are 69.5 and 59, respectively, and (2) a Google Location dataset

containing around 2.2k users, 185k ratings, and 150k unique items;

the mean and median number of ratings in a user profile are 85.2

and 64, respectively.

3.2 Recommendation algorithms
We analyze data minimization properties for two fundamental

classes of recommendation algorithms - neighborhood-based (k-

nearest-neighbors) and matrix-factorization-based (SVD) [12], both

as implemented in the Surprise library [21].

3.2.1 Notation. For a user u and item i , we use rui to denote the
true rating given by the user for the item and r̃ui as the predicted
rating by the user for the item from a predictive model,

3.2.2 Neighborhood-based. For the neighborhood-based recom-

mendations, we use the user-user k-nearest-neighbors algorithm

setting k = 30, as per prior studies investigating the recommenda-

tion performance in the MovieLens dataset [8]. Rating prediction

r̃ui for user u and item i is computed as a weighted sum of the

ratings of i made by u’s top-k nearest neighbors among users who

rated item i:

r̃ui =

∑
v ∈N k

i (u)
sim(u,v) · rvi∑

v ∈N k
i (u)

sim(u,v)
(1)

where N k
i (u) is the set of usersv who have rated item i and who are

most similar to user u by the value of similarity measure sim(u,v).
User similarity is computed as the inverse of the mean squared

difference of ratings (with add-1 smoothing) over set Iu ∩ Iv .

3.2.3 Matrix-factorization-based. For thematrix-factorization-based

recommendations, we use an implementation of the FunkSVD algo-

rithm [12] with 30 latent factors. Rating prediction for user u and

item i is computed as:

r̃ui = µ + bu + bi + q
⊺
i pu (2)

where qi is a 30-dimensional latent vector representing item i , pu
is a 30-dimensional latent vector representing user u, µ is a global

mean, and bi and bu are item and user biases, respectively.

3.3 Error measures
We measure the quality of recommendations using: RMSE (compar-

ing the differences between the predicted and true ratings for all

items in the test set and thus assuming a user consumes the whole

recommendation set) and NDCG (measuring the quality of the top

results with a logarithmic discounting factor for errors in lower

ranking positions [22]). In our experiments, we set k = 10.

3.4 Protocol
We explore data minimization in the context of a system that begins

with extensive data collection for a starting set of users. This may

be gathered in-house or from a representative market not subject

to data minimization constraints. While there will be situations

where seed data is unavailable, we leave that for future work.

To simulate this situation, we randomly split the full dataset into

two parts: the system data DS (70% of all users), and the minimiza-

tion data DM (30% of all users). Users are randomly assigned to one

of these groups. For minimizing users in DM , we further randomly

split their ratings into candidate (70% of all ratings) and test data

(30% of all ratings). Different minimization strategies will select

different subsets of each user’s candidate data for use by the system.

Recommendations generated based on the selected data from the

candidate user data are evaluated using the remaining test data.

Data is selected from the candidate user data using a chosen

minimization strategy and a minimization parameter n (the number

of items to select). We run experiments for n = {1, 3, 7, 15, 100}.

3.5 Data minimization strategies
When minimizing data, we select a subset of user candidate items to

present to the recommendation algorithm. While approaches with

similar problem structure have used greedy algorithms modeling

the information-theoretic utility of data [26], greedy algorithms are

less practical in a data minimization scenario. Since utility of data is

tied to a specific recommendation performance metric rather than

modeled as information gain, the submodularity and monotonicity

properties upon which guarantees on greedy algorithms are based

do not necessarily hold. Moreover greedy selection is costly in

terms of runtime, since the recommendation algorithm needs to be

run for every possible selection. This section presents the selection

strategies we study in this paper.

3.5.1 Full. We compare other minimization strategies against a

baseline generating predictions based on full observational pools

of users from DM . Formally,
˜Iu = Iu .

3.5.2 Empirical bounds. We compare the minimization results

against brute-force baselines that select 1 item from a user’s profile

that lead to (i) the highest prediction RMSE (One item worst), (ii)

the lowest prediction RMSE (One item best). We also compute (iii)

the average RMSE error over all possible 1-item selections (One

item avg); this value can be thought of as an empirical expected

value of RMSE over 1-item random selections.

3.5.3 Random. This strategy selects n ratings uniformly at random

from the observational pools of the minimizing users. The key

observation to make here is that this method will not create random
user profiles as a result, but minimized average profiles of each
user. That is, if ratings of certain types (e.g., of a certain genre)

are common in the full observational profile, they are likely to be

preserved through the random sampling.

3.5.4 Most recent. This strategy selects n most recent ratings from

the observational pools of the minimizing users. Note that one can
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expect this method to behave similarly to the random method in

case the data is collected over a period of time short enough for

the user tastes to stay intact. In case the observational data of each

user spans a very long time, we could expect the predictions to be

better than random in case the test data is also sampled from the

most recent ratings, and worse than random otherwise.

3.5.5 Most/least favorite. This strategies select the n ratings that

have the highest/lowest value for a given user, respectively.

3.5.6 Most Rated. This method uses the system data to determine

the selection method. For a given user, we select the n items that

have been rated the most often (by the number of times an item

has been rated by all users in the system data).

3.5.7 Most characteristic. This method uses the system data to

determine the selection method for a given user. We create binary

vector representations of items bi by allocating each system data

user to a dimension of bi and setting the value to 1 if the user has

rated item i , and 0 otherwise. We then take the average of all the

item representations bavд . Finally, for a given user we select the

n items with the closest Euclidean distance to the average item

representation. Whereas the most rated strategy treats all users the

same when creating its counts, this strategy rewards items for being

rated by users who have rated many items and penalizes items that

have been rated by user who have rated few items. Formally,
˜Iu =

argmin{i }
∑
d(bi ,bavд) s .t . |{i}| = n, where d() is the Euclidean

distance between two vectors, bi is the binary representation of

item i , and bavд is the average item vector; all vectors are computed

using the system data.

3.5.8 Highest variance. Thismethod is based on one of the standard

approaches for feature selection in machine learning [17]. It uses

the system data to determine the selection method for each user by

looking at which items have the highest variance in their ratings.

Formally,
˜Iu = argmax{i }

∑
σ ({r∗i })

2 s .t . |{i}| = n, where σ is

standard deviation, and {r∗i } is the set of all ratings for item i in
the system data.

4 GLOBAL DATA MINIMIZATION
To guide the interpretation of the results, we want to make the

following remarks. Reasoning about feasibility of data minimiza-

tion, it is important to understand what quality loss we would

incur if we based personalized recommendations on minimized

user profiles. The main purpose of our experimental study is thus

to measure and compare the quality of recommendations under

different minimization conditions.

To reason about the efficacy of a minimization condition (maxi-

mum size of user profile n and a minimization strategy) for a given

recommendation algorithm, we measure the difference in the qual-

ity of recommendations obtained under the minimization condition,

and the quality of recommendations obtained if the recommenda-

tion algorithm sees all available user data (the Full strategy). We

conclude that minimization is feasible if this difference is not statisti-

cally significant, or if the difference is minimal (low RMSE increase,

and low NDCG decrease).

Table 1: Minimization performance for k-NN recommenda-
tions macro-averaged over all users. ∗ denotes cases when
the difference between a given strategy and the ’full’ strat-
egy is statistically significant under a two-tailed t-test with
p < 0.01 and the Bonferroni correction. Average RMSE and
NDCG@10 for non-minimized data is 0.915 and 0.777, re-
spectively. Note that the lack of statistical significance sug-
gests a minimization technique is performing well.

n=1 n=3 n=7 n=15 n=100

RMSE

random 1.062∗ 1.051∗ 1.013∗ 0.963∗ 0.915
most recent 1.044∗ 1.060∗ 1.028∗ 0.974∗ 0.915
most favorite 1.053∗ 1.046∗ 1.000∗ 0.957∗ 0.915
least favorite 1.049∗ 1.077∗ 1.039∗ 0.983∗ 0.915
most watched 1.064∗ 1.007∗ 0.966∗ 0.935∗ 0.914

most characteristic 1.008∗ 1.044∗ 1.073∗ 1.024∗ 0.915
highest variance 1.055∗ 1.071∗ 1.020∗ 0.955∗ 0.915

NDCG@10

random 0.681∗ 0.721∗ 0.743∗ 0.762∗ 0.777
most recent 0.678∗ 0.708∗ 0.734∗ 0.760∗ 0.777
most favorite 0.697∗ 0.730∗ 0.751∗ 0.767 0.777
least favorite 0.662∗ 0.700∗ 0.733∗ 0.752∗ 0.777
most watched 0.721∗ 0.746∗ 0.764∗ 0.772 0.777

most characteristic 0.637∗ 0.656∗ 0.690∗ 0.737∗ 0.777
highest variance 0.664∗ 0.708∗ 0.744∗ 0.766∗ 0.777

Table 2: Minimization performance for SVD recommenda-
tions macro-averaged over all users. ∗ denotes cases when
the difference between a given strategy and the ’full’ strat-
egy is statistically significant under a two-tailed t-test with
p < 0.01 and the Bonferroni correction. Average RMSE and
NDCG@10 for non-minimized data is 0.818 and 0.793, re-
spectively. Note that the lack of statistical significance sug-
gests a minimization technique is performing well.

n=1 n=3 n=7 n=15 n=100

RMSE

random 0.876∗ 0.861∗ 0.843∗ 0.828∗ 0.818
most recent 0.875∗ 0.864∗ 0.851∗ 0.837∗ 0.820
most favorite 0.886∗ 0.913∗ 0.974∗ 0.999∗ 0.820
least favorite 0.888∗ 0.934∗ 1.015∗ 1.036∗ 0.824∗

most watched 0.874∗ 0.864∗ 0.849∗ 0.835∗ 0.818
most characteristic 0.873∗ 0.862∗ 0.847∗ 0.837∗ 0.818
highest variance 0.874∗ 0.860∗ 0.842∗ 0.830∗ 0.819

NDCG@10

random 0.793 0.793 0.794 0.793 0.795
most recent 0.792 0.795 0.792 0.792 0.791
most favorite 0.793 0.794 0.793 0.794 0.791
least favorite 0.794 0.793 0.792 0.793 0.793
most watched 0.794 0.792 0.792 0.790 0.792

most characteristic 0.794 0.792 0.793 0.793 0.794
highest variance 0.793 0.793 0.794 0.792 0.791

4.1 Feasibility of global data minimization
Tables 1 and 2, as well as Figure 1 present the performance of the k-

NN and SVD recommendation algorithms for various minimization

strategies and intensity (parameter n denotes the number of items

from observational pools that were shown to the recommendation
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Figure 1: Sorted RMSE (a, c) and NDCG (b, d) values for all users when selecting random subsets of items of varying sizes
as input to the kNN (a, b) and SVD (c, d) recommendation algorithms. Higher values on the y-axis in plots (a, c) are worse,
while higher values on the y-axis in plots (b, d) are better. SVD is more robust to minimization than kNN, with aggressive
minimization incurring low quality loss. While error increases as we minimize, the distribution of remains the same.

algorithm). The numbers show the RMSE and NDCG values of the

minimized recommendations, averaged over all minimizing users.

For both recommendation algorithms, we observe that the rec-

ommendation quality decreases as we present the algorithm with

less data to base personalized recommendations on. We attribute

the few exceptions (e.g., the increase of RMSE between n=3 and n=7)

to the inherent noisiness of data and effects of sampling strategies.

We would like to highlight two observations. First, the overall

loss incurred by minimization is relatively low when compared to

the variation of error across users — see Figure 1 for a visualization

of sorted error values for all users in the minimization dataset for

randomminimization strategies. It is important not to overinterpret

these results based on measures like RMSE, though. Ratings in

recommendation datasets are often relatively homogenous in terms

of absolute values: In the MovieLens dataset, for instance, they vary

between 0.5 and 5 in 0.5 increments. Moreover, most users abstain

from using extreme values in their ratings: In our system data, out

of 10 different values in the rating scale, the three most used rating

values of 3, 3.5, and 4, make 61% of all ratings.

Second, the distribution of error in the population remains the

same even when the recommendations are based onminimized data.

We observe that the shapes of the error value curves are similar for

different minimization methods beyond random (effects similar to

those in Figure 1). We exclude additional plots for lack of space.

4.1.1 Withheld data. While our experiments explicitly controlled

the size of user interaction logs available to a recommendation

algorithm, the data withheld from the algorithm can be substan-

tial. On average, minimization with n = {1, 3, 7, 15, 100} leads to

99%, 96%, 90%, 79%, 6% of data withheld from the recommendation

algorithm, respectively. Note that this is not a comment about the

total amount of data available to the system: In the setup we con-

sider in this paper, the recommendation algorithm is trained on full

data of 70% of users, which means that the effective percentage of

the withheld data is lower.

4.2 Algorithm robustness to data minimization
We find that SVD is more robust to data minimization according

to both quality measures. In case of RMSE, metric differences be-

tween the Full strategy and any other strategy and minimization

parameter n are lower for SVD than for kNN. This observation also

holds for NDCG; moreover, the differences in NDCG between the

performance of SVD on full data and minimized data are not signif-

icant (under a two-tailed t-test and p < 0.01 with the Bonferroni

correction). Note that the SVD robustness result is partly explained

by our experimental protocol—the minimized observed data of each

test user is ’folded in’ into the matrix one user at a time. While this

approach is more computationally expensive than folding in all test

users at once, the resulting decomposition is computed for a matrix

where only one row is different from the full data condition. On

top of that, the NDCG measure is not sensitive to differences in

predicted rating values as long as the predicted ranking of items

remains the same (which is likely to happen when the decomposed

matrix is similar to the full data matrix). The lower minimization ro-

bustness of kNN can furthermore be explained by the fact that user

similarities are computed over rating sets joint with other system

users (Iu ∩ Iv , see 3.2), and minimization thus leads to computing

predictions over noisier neighbour sets.

4.2.1 Comparison to prior work. Note that these findings are con-
sistent with prior work. First, Chow et al. [5] demonstrate that,

for similarity-based recommendations, performance often does not

differ after removing random data points. Further, different data

removal strategies can improve or degrade predictive performance

relative to random removal; in some cases, strategies can improve

over the non-minimized predictions [5, Fig. 1].

Second, Wen et al. [43] analyzed performance decreases in a rec-

ommendation privacy scenario where users provide an algorithm

with their recommendation data from the most recent N days. This

filtering strategy is similar to the Most Recent minimization strat-

egy we introduce in Sec. 3.5. Wen et al. showed that predictions of

matrix-factorization-based methods are robust, with performance

not degrading even when data is limited to ratings from the pre-

vious one to seven days and especially when the percentage of

minimizing users is low [43, Fig. 2].
1

4.2.2 Factors influencing rating changes when minimizing for k-NN.
Recall Eq. 1. What will influence the difference between an item

prediction r̂ui under the minimization condition and the prediction

1
The experimental protocol used in our paper maps to a setting in Wen et al. [43]

where the percentage P of minimizing users is much lower than 0.25.
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based on the full observational pool? Since the system data remains

intact under our experimental setup, the values of rvi will remain

intact as well. The value of r̂ui will be changed, though, when u’s
relative similarity to other users changes. This might happen when:

• The set of nearest neighbors N k
i (u) changes and user u is placed

in a different neighborhood for item i . The nearest neighbor

summation of rvi ratings happens over a different set of users v
(even if the relative similarities to those users stay the same).

• The set of nearest neighbors N k
i (u) changes and user u is placed

in a neighborhood where the relative similarities to other users

sim(u,v) are different (even if the neighbor rating values rvi are
the same).

• The set of nearest neighbors N k
i (u) stays the same but the simi-

larity of u to other users within the neighborhood changes. Note

that this is very likely to happen since the similarities will be

computed over u’s minimized data.

While it is possible to enumerate these error contributing factors,

analysis of how exactly they impact overall minimization error

is challenging because the different dimensions (user similarity,

neighborhoods, item popularity, etc.) all influence each other.

4.2.3 Factors influencing rating changes when minimizing for SVD.
When will an item prediction r̂ui under the minimization condition

and the prediction based on the full observational pool? Note that

latent item representations qi and biases bi will largely stay intact

– during training, most updates to qi ’s and bi ’s will come from

the data of the system users. The rating change will primarily be

influenced by a change in the latent user representation pu and bias

bu – during training, updates to these components will come from

the latent factors of minimized observational items. Thus, we can

expect biggest rating differences if the items in the minimized user

profile don’t reflect the full user profile. To examine the relative im-

portance of pu and bu , we run minimization for recommendations

generated using an unbiased SVD (removing µ, bu , and bi from
Eq. 2). We find that errors incurred by minimization for this setup

increase, suggesting that recommendation performance might be

preserved by the bias terms when data is minimized.

4.3 Best and worst minimization strategies
4.3.1 Randomminimization strategy. Figure 1 presents sorted RMSE

(a, c) and NDCG (b, d) error values per user in theMovieLens dataset

population, respectively, when minimizing data using random selec-

tion strategies. Unsurprisingly, on average, recommendation error

increases as we observe fewer items. The error increase is, however,

not substantial. There a number of factors that contribute to this

effect. First, note that the random minimization strategy does not

create random user profiles, but average user profiles, and the rating

distributions over salient categories are likely to remain the same.

Second, user profiles are of varying sizes and for somemethods min-

imizing methods already access full observational pools. We tried to

alleviate this effect by inclusion of users whose observational pools

have at least 45 ratings. To understand these limitations better, we

also plot the empirical lower bound on the error for predictions

based on empty observational pools (non-personalized predictions

based on the system data only). While the random minimization

strategy performs reasonably well, there exist better and worse

minimization strategies for both recommendation algorithms.

4.3.2 Strategies performing better than random minimization. For
kNN recommendations, Most Favorite and Most Watched strategies

perform better than Random. Movies users like most likely lead

to highest contributions to user-user similarity, and thus the Most

Favorite strategy tends to quickly place users in the right neighbor-

hoods. Most Watched, by asking about the most rated movies, will

quickly place users belonging to large clusters of popular movie

watchers in the right neighborhood. Since there are many users

with a taste for most popular movies, this strategy overall leads to

a good global minimization performance.

4.3.3 Strategies performing worse than random minimization. For
kNN recommendations, the Highest Variance selection strategy

performs worse than the random selection strategy for the lowest n
values (n = 1, 3, 7). One hypothesis is that the items selected by this

strategy often have very high or very low ratings for a given user,

causing this strategy to effectively interpolate between the perfor-

mance of the Most Favorite and Least Favorite strategies. Whereas

Most Favorite usually performs slightly better than random, Least

Favorite often performs far worse, and when observed together

explains why the Highest Variance strategy often performs worse

than the Random selection strategy. We believe this is because

the most characteristic score is inversely correlated with the most

watched count.

For SVD recommendations, Most Favorite and Least Favorite

strategies perform significantly worse than Random. We hypothe-

size that asking a user for ratings from just one side of their taste

spectrum fails to populate all latent dimensions with relevant in-

formation. Moreover, since the most and least favorite items of a

given user are likely correlated, asking for more items corroborates

this effect by constructing an increasingly skewed user taste rep-

resentations. This skew potentially leads to a reversal effect we

have observed—Most Favorite and Least Favorite strategies initially

decrease in performance as we increase n.

4.3.4 Other strategies. For kNN recommendations, Most Recent

strategy performs on average worse than Random, likely due to

the fact that the MovieLens-20M data was collected over a long

period of time, yet our testing sample was random. Relatively bad

performance of the Least Favorite strategy is related to insensitivity

of standard recommendation algorithms to negative rating feed-

back; systems generally need to be tuned to be able to learn from

negative ratings [11].

4.4 Differences between datasets
As described in Sec. 3.1, we run the the same experiments with two

different datsets, using the Google Location dataset for validation.

We observe the same trends in terms of the performance of differ-

ent minimization strategies. One major difference in the results is

that we observe similar robustness to minimization for KNN and

SVD recommendations. We attribute this fact to the key difference

between the two datasets—in Google Location dataset item ratings

are sparser (20k vs. 150k unique items for a similar total number

of users) thus minimization is less likely lead to overall change in

similarities to other users.
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5 PER-USER DATA MINIMIZATION
5.1 Feasibility of per-user data minimization
Figure 2 shows the error variation when the data is sorted only by

the error value of the Full method - other error values correspond

to users at the ranking positions determined by the sorting for Full.

Note that the data plotted here is exactly the same as the data in

Figure 1 — only the sorting differs. These results suggest that, while

the distribution of error in the population across users remains

largely similar irrespective of recommendation algorithm or mini-

mization strategy (see Figure 1), errors incurred to individuals can
be substantial. We observe this behavior for all tested minimization

methods and recommendation algorithms, although the per-user

variations are lower when minimizing for SVD recommendations.

This finding suggests that, for a fixed quality threshold, data

can be less effectively minimized if the loss requirement applies to

every individual as opposed to the population on average.

Since the error is not uniformly distributed, we dive deeper to try

to understand which users are most impacted. The following sec-

tions analyze a number of user characteristics and their correlations

with error deltas.
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Figure 2: RMSE (a) and NDCG (b) variation over the popu-
lation of users when selecting random subset of items of
varying sizes as an input to the kNN algorithm. The under-
lying data presented here is the same as in Figure 1, but the
data points are sorted by the y-axis value of the Full strategy
only. Data points of other selection methods are unsorted
and match the users at the ranking positions defined by the
sorting of the Full strategy. This result shows that, while the
overall quality loss is low and the error distribution remains
the same, the quality loss for individuals can be substantial.

5.2 User characteristics vs. minimization error
We investigate whether the minimization errors (the difference

in the quality metric when comparing the recommendations over

minimized profiles and the recommendations over full profiles)

are correlated with different user characteristics. For each user, we

consider the following characteristics (measured over the user’s full

profile, before minimization): (1) Number of ratings, (2) Average

value of the ratings in a user’s profile, (3) Average popularity of

items in a user’s profile (measured as the number of users in the

system data who have rated a given item), (4) Profile diversity

measured by the number of genres the movies in a user’s profile

belong to, (5) Average similarity to all users in the system data, (6)

Average similarity to the 30 most similar users in the system data.

5.2.1 Regression analysis. For each pair of recommendation algo-

rithm and minimization strategy, we run an Ordinary Least Squares

regression with the error delta as the dependent variable, and the

above user characteristics as independent variables. Error delta is

computed in two versions as: (i) ∆3 = RMSE(3) − RMSE(Full), and

(ii) ∆15 = RMSE(15) − RMSE(Full). We compute the coefficient of

determination (R2) to measure what proportion of variance in the

dependent variable can be explained by the independent variables.

We find that the variance in neither ∆3 nor ∆15 is well explained

by the selected user variables, across recommendation and mini-

mization strategies. For kNN and ∆3, we get the highest R
2
at 0.102

for the Most Recent strategy, followed by 0.0935 for the Most Char-

acteristic System strategy, and 0.061 for the Least Favorite strategy.

For kNN and ∆15, R
2
values are even lower. For SVD and ∆3, we

get the highest R2 values for the Most and Least Favorite strategies,

at 0.396 and 0.364, respectively. For SVD and ∆3, R
2
values follow

similar trends.

5.2.2 A closer look. For a closer look into the complex dependen-

cies between user characteristics, minimization strategies, recom-

mendation algorithms, and minimization errors, we plot the most

interesting cases in Figure 3.

Figure 3a shows the dependency between the number of ratings

in a user’s full profile and the error delta (kNN+Random). The plot

suggests that the smaller a user’s observational pool, the higher

variation in the incurred minimization error. We conjecture that

the reason for this effect is that sparse profiles with little data are

likely to misrepresent true user tastes.

Figure 3b shows the dependency between a user’s average simi-

larity to all users in the system data and the error delta (kNN+Random).

We observe a similar trend – lower global similarity means higher

variance in minimization error. However, the reason for this effect

is likely different. Users who are similar to many system users are

likely to end up in a neighborhood with accurate recommendations

irrespective of which items are minimized out of their profiles.

Figure 3c shows the dependency between a user’s RMSE error

for recommendations over the full observational pool the error

delta (kNN+Random). We observe that lower RMSE values over the

full data tend to imply higher error deltas, suggesting that users

who are underserved by a system will be harmed the most when

minimizing data.

Figures 3d and 3e reveal a curious observation about the depen-

dency between the average value of ratings in a user profile and the

error delta incurred by the Most and Least Favorite strategies for

SVD. Users who tend to give lower movie ratings on average will

receive worse results when minimizing using the Most Favorite

strategy – likely because the movies they like the most will look

like neutral movies when compared to the absolute values of rat-

ings of other users. For a similar reason, though inverted, users

who tend to give higher ratings on average will receive worse re-

sults when minimizing using the Least Favorite strategy. Figure 3f

shows that for the Random strategy the effect is symmetric and

less pronounced.

6 DATA MINIMIZATION VS. PRIVACY
The operational definitions of data minimization proposed in this

paper, as shown in the experiments, will often lead to a decrease of
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Figure 3: Selected cases of the dependencies between user
characteristics and the RMSE delta (higher value means
higher quality loss forminimization) incurred byminimiza-
tion: (a) Number of ratings in the full profile, kNN, Random,
(b) Average similarity to all users in the data, kNN, Random,
(c) RMSE of recommendations over full profile, kNN, Ran-
dom (d) Average rating value in the full profile, SVD, Most
Favorite, (e) Average rating value in the full profile, SVD,
Least Favorite, (e) Average rating value in the full profile,
SVD, Random. In each of the plots, a dot corresponds to one
minimizing user.

data collection. However, it is a feasible scenario that that each data

point positively contributes to a system’s performance and data

collection will not be decreased as a result. Rather than thinking of

minimization as another computational definition of privacy, we

look at data protection more broadly. For instance, the UK Informa-

tion Commissioner’s Office defines data protection as ‘the fair and
proper use of information about people’ [30]. Nevertheless, because
of the potential decrease in the collected data, the proposed defini-

tions of data minimization are related to different computational

concepts of privacy. We briefly discuss some of these relationships.

Identifiablity. Presence of a unique combination of items in an

anonymous user profile poses a deanonymizaton risk: if an attacker

has the background knowledge that a user has rated these items,

they can uniquely identify their profile and thus gain access to the

rest of the user’s data. Analogous scenarios motivated the work

on k-anonymity and related concepts [38]. One way of quantifying

identifiability without access to external datasets is through a lower

bound on the number of items an attacker would need to know to

identify a user in a given dataset. More specifically, we compute, for

each useru, theminimum size of a subset of her ratings that does not

exist in a profile of any other user: minI ∈P(Iu ) |I | s.t. ∀v,u I ⊈ Iv .
The higher the value of the above measure, the bigger the number

of items an attacker would need to know to uniquely identify a

user profile, and thus the lower the identifiability risk.

Table 3 presents the identifiability statistics for user profiles

minimized using different strategies, averaged over all users. The

results suggest that minimization strategies selecting items based

on the characteristics of system data (Most Watched, Highest Vari-

ance, Most Characteristic) lead to lower profile identifiability than

minimization methods based on an individual’s preferences (Most

and Least Favorite). The most Recent strategy leads to the lowest

identifiability across different values of the minimization parameter

n. We conjecture this is because at a given time, many users rate

the same new releases.

Profiling.Another computational privacy concept is that of profiling—

collecting detailed topical profiles of users [2, 4, 44]. Should data

minimization lead to decrease of collected data, it is likely that profil-

ing risks also decrease. For instance, in our experiments, decreasing

the number of movie ratings in all user’s profile to a maximum of

100 already reduces the average number of different genres in a

user profile from 28.2 down to 25.1 according to the best strategy.

Other. While decreasing the size of data might also help with

other privacy dimensions, such as protection from inference [6] or

differential privacy [7] in case aggregate data is released, analysis

of these dimensions is more complex and might lead to removal of

different data points.

Table 3: Identifiability (the minimum number of items nec-
essary to uniquely identify a user) for user profiles mini-
mized using different strategies, averaged over all users.

n=3 n=7 n=15 n=100

random 2.02 1.89 1.76 1.55
most recent 1.91 1.79 1.71 1.55
most favorite 2.01 1.88 1.79 1.55
least favorite 1.92 1.81 1.71 1.55
most watched 2.28 2.33 2.00 1.57

most characteristic 1.99 2.00 2.00 1.57
highest variance 2.04 2.00 2.00 1.57

7 RELATEDWORK
Interpreting GDPR principles in practice. The core contribu-
tion of this paper is in pointing out the gap between the current

understanding of GDPR’s data minimization principle and the re-

ality of personalization systems and proposing possible adequate

re-interpretations. In this context, our work is related to other

efforts to translate GDPR’s principles into data science practice.

Prior work in this space has explored practical challenges behind

revoking consent to data processing[32, 40], and explored what the
right to be forgotten [25] means in practice. Recent work proposes

practical solutions for removing data points from trained machine

learning models in case an individual included in the training data

requests deletion [15]. The right to explanation[23], requiring ser-

vice providers to be able to explain algorithmic decisions and re-

sults to their users, motivated the active are of explainability and
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transparency. Another line of work analyzes changes to the online

ecosystem incurred by GDPR, including the presence of consent

notices [39], or tracking scripts[35, 36].

Privacy.As discussed in Sec. 6, data minimization is related to some

of the computational concepts of privacy. In the context of personal-

ized search, many works proposed mechanisms for perturbing user

search logs while preserving the search quality, including mixing

and merging queries into synthetic profiles[2, 9], grouping user

profiles [28], or splitting them [4, 44, 47]. Privacy has also been

interpreted as a probabilistic guarantee on data retention [34]. To

preserve the privacy of recommender system users, it has been

proposed to prevent the collection of ratings locally if they are pre-

dicted to lead to privacy loss [16], or to store the ratings of different

users intermingled [2]. Research in privacy-preserving information

retrieval [45] moreover investigates problems related to search log

anonymization [46], or the relation between user behavior and

privacy attitudes [48].

Performance of recommender systems under varying condi-
tions. Analyses we perform in this paper are related to a line of

work analyzing the success and failure of recommender systems un-

der changing conditions. Ekstrand et al. [8] analyze data factors that

cause different recommendation algorithms to fail. Chow et al. [5]

propose techniques to estimate the contributions of different data

points to the overall recommendation quality. Vincent et al. [42] pro-

pose ’data strikes’ as a form of collective action where users protest

bywithholding their data from recommendation provider. Note that,

while the goal of data strikes is to limit availability of data to reduce
recommendation performance, the goal of performance-based data

minimization it to limit availability of data while preserving rec-

ommendation performance. Wen et al. [43] analyzed performance

decrease in a recommendation privacy scenario where users pro-

vide an algorithm with their recommendation data from the most

recent N days.

Relation to other disciplines We believe that further work on

data minimization would lead to synergies not only with the legal

community, but also with other computer science subdisciplines.

While the focus of data minimization is on minimizing features

rather than data points, the problem is related to works studying the

relationships between training examples and algorithmic perfor-

mance. This abstract description includes, for instance, the problems

of data influence [24], data valuation [14], active learning [1], or

budgeted learning [27].

8 DISCUSSION AND CONCLUSIONS
8.1 Summary of the findings
In this paper, we have identified a lack of a homogeneous inter-

pretation of the GDPR’s purpose limitation and data minimization

principles in the domain of personalization systems. We argue that

these systems do not necessarily need to collect user data, but that

they do so in order to improve the quality of the results. Thus, we

propose two performance-based interpretations of the data min-

imization principle that tie the limitations of data collection to

quality metrics. The first interpretation focuses on the global aver-

age algorithm performance, while the second focuses on the local

per-user minimum performance.

We found SVD (FunkSVD with user and item biases) to be more

robust to minimization than kNN user-user collaborative filtering

across different minimization strategies. Among the minimization

strategies, we found the random strategy to perform well, likely due

to the fact that it preserves average user characteristics. However,

for each recommendation algorithm, it is possible to find strategies

that perform better or worse than random.

While the results suggest global data minimization can be quite

successful (in some cases we can withhold as much as 90% of the

user data incurring RMSE loss as low as 0.025), we show that quality

difference can be substantial for individual users. Furthermore,

our analysis with Ordinal Least Squares regression shows that the

variation in individual-level error is not well explained by standard

user features. The complex interaction between the individual-level

error and recommendation algorithms, minimization strategies,

system data, and individual data, require further study, also from

a legal perspective. Indeed, further research should evaluate the

desirability of both approaches, considering that, on the one hand,

the GDPR requires that each data processing operation be examined

on its own merits, yet on the other purpose limitation or data

protection by design and by default ought to be evaluated from a

global perspective.

8.2 Potential negative impacts
Based on our observations about varying user-level errors, it is

plausible that data minimization hurts marginalized groups, in par-

ticular if those groups form a minority of the data—the members

of majority population will be well served with just a few features

(because there is sufficient statistical support), while minority pop-

ulations will need to provide more features to get service of compa-

rable quality. A scenario like this would further harm marginalized

populations through decreased data protection.

Furthermore, our analysis assumes service providers have a col-

lection of background data to base personalization on (purchased

or collected from markets that are not legally obliged to data min-

imization). Companies might also need personal data to develop

new services. In this work, we did not consider such provider costs.

8.3 Challenges for data minimization
While this paper enhances our understanding of what performance-

based data minimization means in practice, a number of challenges

emerge. Practical minimization mechanisms would not be able to

measure quality loss directly, nor easily adapt selection mechanisms

to each user if necessary without access to candidate user data. To

support minimization, we need to design new protocols for user-

system interaction, and new learning mechanisms that select data

while respecting specific minimization requirements. Last but not

least, further interdisciplinary work with the legal community is

necessary to develop data minimization interpretations that are

verifiable and viable, both legally and computationally.
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