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ABSTRACT
Fairness and equity have become central to ranking problems in
information access systems, such as search engines, recommender
systems, or marketplaces. To date, several types of fair ranking
measures have been proposed, including diversity, exposure, and
pairwise fairness measures. Out of those, pairwise fairness is a
family of metrics whose normative grounding has not been clearly
explicated, leading to uncertainty with respect to the construct that
is being measured and how it relates to stakeholders’ desiderata.

In this paper, we develop a normative and behavioral grounding
for pairwise fairness in ranking. Leveraging measurement theory
and user browsing models, we derive an interpretation of pairwise
fairness centered on the construct of producer dissatisfaction, tying
pairwise fairness to perceptions of ranking quality. Highlighting
the key limitations of prior pairwise measures, we introduce a set
of reformulations that allow us to capture behavioral and practical
aspects of ranking systems. These reformulations form the basis for
a novel pairwise metric of producer dissatisfaction. Our analytical
and empirical study demonstrates the relationship between dissat-
isfaction, pairwise, and exposure-based fairness metrics, enabling
informed adoption of the measures.
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1 INTRODUCTION
Information Access Systems (IAS) facilitate user interactions with
content by ranking and presenting items to their users according
to their estimated merit or relevance [2, 29]. Content producers in
IAS are increasingly recognized as stakeholders whose economic
and societal needs must be taken into account, along with those of
consumers, to foster a fruitful and equitable information ecosystem
[19, 37, 45, 46]. Their needs can be considered individually [8, 10, 16]
or based on group membership [6, 39, 40] determined by sensitive
attributes such as gender or race. To this end, several measures of
fairness in ranking have been proposed, capturing notions of equity
of exposure [17, 40], representation [1, 42], or pairwise accuracy
[5, 32].

When considering a measure, it is important to distinguish be-
tween its construct, that is, the theoretical property captured by the
measure (e.g. fame), and its operationalization, that is, the mathe-
matical formulation adopted to capture this property (e.g. number of
followers) [26]. In this regard, exposure- and representation-based
measures in fair ranking operationalize well-defined constructs,
clearly connected to the desiderata of producers. They measure
the presence of salient groups of providers in the most visible posi-
tions of a ranking, increasing their chance of being viewed by IAS
users and consequently gain benefits, such as clicks, purchases, or
downloads. In contrast, in the prior literature, pairwise fairness has
not been clearly associated with a quantity of practical interest for
producers [5, 32, 36]. In a nutshell, measures of pairwise fairness
quantify how often the rank of two items from different groups
reflects their merit and whether mismatched pairs are systemat-
ically in favor of one group. This notion of equity is less clearly
connected with immediate producer benefits and thus deserves
further scrutiny.

In this paper, we perform an in-depth study of pairwise fairness.
First, we provide an interpretation of pairwise fairness grounded in
browsing models [12], developing a rigorous distinction between
the construct and its operationalization [26]. We show that pairwise
fairness can capture perceived unfairness on part of item producers,
and thus operationalize their dissatisfaction with the output of an
IAS. Second, we highlight several limitations of existing pairwise
fairness metrics, deriving a novel metric that overcomes the issues.
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Our measure improves on previous proposals by modeling realistic
browsing behaviors, individual user perspectives, and relevance
ties. It captures key aspects of observed unfairness and dissatis-
faction, connected with perceived quality of IAS by the producers,
which is one of the central concerns for platform owners. Finally,
we characterize the relationship between pairwise and exposure-
based measures analytically and empirically. We show their key
similarities, inherited from browsing models, and highlight their
differences arising from the underlying normative constructs.

Overall, we make the following salient contributions:
• Interpretation of pairwise fairness, centered on producer
dissatisfaction with IAS (§ 3).

• New measure of pairwise fairness (§ 5), overcoming the
limitations inherent in the most popular measures (§ 4).

• An analytical (§ 5.2) and empirical (§ 6) study of the relation-
ship between pairwise fairness and exposure-based fairness.

2 BACKGROUND AND RELATEDWORK
Fair ranking is concerned with accurately ordering items without
unjust discrimination. Fairness interventions are developed for bias
mitigation [9, 13], equity [8, 40], and diversity [33, 41], and are tech-
nically challenging due to the existence ofmultiple protected groups
[20, 44], outliers [39], and duplicate ranking items [16]. Recent sur-
veys and comparative analyses of fair ranking omit measures of
pairwise fairness [38, 44] or simply frame them as accuracy-based
[19, 37]. A clear discussion of the construct underlying pairwise
fairness is lacking in the literature [5, 32, 36], hindering an informed
adoption of these measures and understanding of how they relate
to item producers and equity towards them.
Notation. Let I denote a set of items to be ranked, and let 𝑖 be an
item from this set. Let 𝑟𝑖 denote the relevance of item 𝑖 in a given
ranking. Moreover, let 𝑔 ∈ G = {𝐴, 𝐵} denote a (binary, for ease of
exposition) sensitive attribute.1 Let 𝑖 ∈ 𝑔 denote the membership
of 𝑖 in group 𝑔. Let 𝜎∗ denote an “ideal” ranking, i.e., a permutation
which orders items decreasingly by relevance: 𝜎∗ = argsort(𝑟𝑖 ).
Finally, let 𝜎 denote a ranking returned by the IAS in response to a
query, and 𝜎 (𝑘) indicate the item ranked by 𝜎 in position 𝑘 .
Discordant pairs. Central to pairwise fairness is the definition of
discordant pair. Two items 𝑖, 𝑗 ∈ I represent a discordant pair if
their relative ordering in 𝜎 and 𝜎∗ differs. More formally, let 𝜎−1 (𝑖)
denote the position of item 𝑖 in ranking 𝜎 , i.e., 𝜎−1 (𝑖) = 𝑘 ⇐⇒
𝜎 (𝑘) = 𝑖 . Given two rankings, 𝜎 and 𝜎∗, the indicator function for
a discordant pair is defined as

𝑑 (𝑖, 𝑗) = 1(𝜎−1 (𝑖) < 𝜎−1 ( 𝑗), 𝜎−1
∗ (𝑖) > 𝜎−1

∗ ( 𝑗))︸                                            ︷︷                                            ︸
𝑑𝐹 (𝑖, 𝑗)

+

1(𝜎−1 (𝑖) > 𝜎−1 ( 𝑗), 𝜎−1
∗ (𝑖) < 𝜎−1

∗ ( 𝑗))︸                                            ︷︷                                            ︸
𝑑𝑈 (𝑖, 𝑗)

In other words, 𝑖 can be part of a discordant pair when ranking 𝜎
unfairly places it at an advantage (𝑑𝐹 ) or a disadvantage (𝑑𝑈 ) over
another item 𝑗 ; subscripts 𝐹 and𝑈 indicate that the first item is part

1We follow the literature on pairwise fairness and consider binary sensitive attributes.
Extensions to settings with more than two groups can be defined in multiple ways
starting from individual measures (§4.1) and are left to future work.

of a Favorable Discordant Pair (FDP) or an Unfavorable Discordant
Pair (UDP).
Pairwise Fairness. Inter-Group Inaccuracy (IGI) [5] and Rank
Equality Error (REE) [32], the most popular measures of pairwise
fairness, are defined as

𝑀𝐴𝐵 =
1

𝐶𝐴𝐵
·
∑︁
𝑖∈𝐴

∑︁
𝑗 ∈𝐵

𝑑𝑈 (𝑖, 𝑗) . (1)

The key difference between IGI and REE is the normalizing constant
𝐶𝐴𝐵 . We defer a detailed analysis of this aspect to Section 4.4.𝑀𝐴𝐵

measures how often items 𝑖 ∈ 𝐴 are in a UDP with items 𝑗 ∈ 𝐵.
Conversely, 𝑀𝐵𝐴 measures the frequency of cross-group UDPs
where items from 𝐵 are disadvantaged. Beutel et al. [5] then define
fairness as

𝑀𝐴𝐵 −𝑀𝐵𝐴 = 0, (2)

i.e., equality in the frequency of unfavorable discordant pairs be-
tween groups. An explicit discussion of the normative reasoning
behind this measure and the construct it captures is lacking in the
literature. To foster contextualized adoption of pairwise fairness,
this paper develops an interpretation of the measured constructs
and proposes a new generalized fairness metric.

3 WHAT DOES PAIRWISE FAIRNESS
ACTUALLY MEASURE?

Following Jacobs and Wallach [26], we examine fairness measures
distinguishing between the construct, i.e., the theoretical property
that a measure intends to capture, and the operationalization, i.e.,
the particular mathematical formulation meant to model that prop-
erty. Ideally, a fairness measure (operationalization) should be based
on an a priori defined clear normative construct, explicitly enunciat-
ing what it means for an algorithm to be equitable and from whose
perspective. However, fairness measures are often introduced as
self-evident prerequisites for equity, resulting in downstream un-
certainty as to what exactly is being measured or optimized.

These considerations are especially applicable to measures of
pairwise fairness in ranking. For example, REE is based on the
“postulate that there is value in considering error-based fairness
criteria for rankings” [32]. Similarly, for IGI, Beutel et al. [5] “draw
on the intuition of Hardt et al. [23] for equality of odds, where the
fairness of a classifier is quantified by comparing its false positive
rate and/or false negative rate.” Although related to fairness in that
they seek to equalize a certain property between groups, according
to Equation (2), an explicit exposition of the construct behind these
measures is lacking. In this section, we address this gap by ana-
lyzing pairwise fairness measures in depth and uncovering their
underlying construct(s).

3.1 Implicit browsing models
In this section, we demonstrate and derive the implicit user brows-
ing model in pairwise fairness metrics. Let us begin with an observa-
tion that REE and IGI are closely related to Kendall’s Tau [30], a rank
correlation measure defined as 𝜏 (𝜎, 𝜎∗) = 1 − 2

𝐶
· ∑𝑖

∑
𝑗≠𝑖 𝑑 (𝑖, 𝑗),

with 𝐶 = 𝑛(𝑛 − 1)/2. In essence, computing Kendall’s Tau requires
enumerating every item pair and counting discordant ones. Fol-
lowing Equation (1), let us define inaccuracy as the frequency of
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discordant pairs in 𝜎 and 𝜎∗

𝑀 =
1
𝐶

·
∑︁
𝑖

∑︁
𝑗≠𝑖

𝑑 (𝑖, 𝑗), (3)

fromwhich Kendall’s Tau is computed via the linear transformation
𝜏 = 1− 2 ·𝑀 . For the sake of simplicity, we will temporarily concen-
trate on Kendall’s Tau and its interpretation(s), and subsequently
reintroduce the complexity of sensitive attributes to specifically
study REE and IGI.

Furthermore, note that item pairs can be enumerated by brows-
ing the ranking 𝜎 according to a cascade model [14]. To enumerate
every pair, we can browse 𝜎 from top (𝑘 = 0) to bottom (𝑘 = 𝑛 − 1)
and compare the current item 𝜎 (𝑘) (the item at rank 𝑘 in 𝜎) with
items further up in the ranking, to determine whether they consti-
tute a discordant pair.

𝑀 =
1
𝐶

·
𝑛−1∑︁
𝑘=1

𝑘−1∑︁
𝑘′=0

𝑑 (𝜎 (𝑘), 𝜎 (𝑘 ′))

With shorthand notation, we write the indicator function for a
discordant pair of items ranked by𝜎 at positions (𝑘, 𝑘 ′) as𝑑 (𝑘, 𝑘 ′) =
𝑑 (𝜎 (𝑘), 𝜎 (𝑘 ′)).

Moreover, let us define a trivial browsing model, according to
which users visit the positions in a ranking with uniform (unit)
probability across all ranks. More formally, 𝐹 (𝑘) = 1 ∀𝑘 , where
𝐹 (𝑘) denotes the probability that users will visit the item 𝜎 (𝑘).
With this notation, we can write the following alternative formulas
for𝑀 :

Item-centric 𝑀 =
1
𝐶

·
𝑛−1∑︁
𝑘=0

𝑘−1∑︁
𝑘′=0

𝐹 (𝑘 ′)𝑑𝑈 (𝑘, 𝑘 ′) (4)

User-centric: 𝑀 =
1
𝐶

·
𝑛−1∑︁
𝑘=0

𝐹 (𝑘)
𝑘−1∑︁
𝑘′=0

𝑑𝑈 (𝑘, 𝑘 ′) (5)

In the next section, we show that these alternative formulations cap-
ture the perspectives and desiderata of item producers (item-centric)
or item consumers (user-centric). They are equivalent under the
trivial browsing model defined above, but generally yield different
values for𝑀 . Both provide a way to count and weigh each pair of
items by sequentially traversing a ranking according to a specified
browsing model 𝐹 (𝑘).

3.2 Interpretations
We provide two alternative interpretations of Kendall’s Tau based
on Equations (4) and (5), before generalizing those interpretations
to pairwise fairness metrics.

• Item-centric: Producers of items at each rank 𝑘 evaluate
ranking 𝜎 by focusing on the most visible cases of unfair
treatment against their item 𝜎 (𝑘). Their dissatisfaction with
𝜎 grows each time they encounter a UDP for 𝜎 (𝑘), that is,
an item of lesser relevance ranked better than their own.
The inner summation

∑𝑘−1
𝑘′=0 𝐹 (𝑘

′)𝑑𝑈 (𝑘, 𝑘 ′) is a weighted
counter of UDPs, with a weight proportional to the visibility
of the unjustly favored item. According to this interpretation,
Kendall’s Tau operationalizes aggregate producer dissatis-
faction with 𝜎 for unjustly favoring other items.

• User-centric: Users browse the ranking 𝜎 sequentially, vis-
iting items in rank 𝑘 with probability 𝐹 (𝑘). Each time they
visit an item 𝜎 (𝑘), if an item of lower relevance was un-
duly positioned above it, users add 1 to a counter measuring
wasted effort in arriving at the item in position 𝑘 . Accord-
ing to this interpretation, Kendall’s Tau operationalizes user
dissatisfaction due to wasted browsing effort.

These interpretations are also applicable to group-based mea-
sures of pairwise fairness, such as IGI and REE (Equation 1), with
the caveat of focusing on cross-group comparisons. To exemplify,
let us focus on the item-centric formulation and consider

𝑀𝐴𝐵 =
1

𝐶𝐴𝐵
·
𝑛−1∑︁
𝑘=1

𝑘−1∑︁
𝑘′=0

𝐹 (𝑘 ′)𝑑𝑈 (𝑘, 𝑘 ′) · 1(𝜎 (𝑘) ∈ 𝐴, 𝜎 (𝑘 ′) ∈ 𝐵)

Item-centric interpretations for IGI and REE convey the dissatis-
faction of items (and producers) from one group for being unjustly
ranked worse than items of lesser relevance from a different group.
More specifically, suppose that an item in position 𝑘 ′ belongs to
group 𝐵; the producers of group 𝐴 evaluate whether this item
is unjustly ranked above their items despite having lower merit.
They contribute to an inter-group dissatisfaction counter, which is
weighted according to the probability of a visit at rank 𝑘 ′, i.e., to the
visibility of the unjustly favored item. In other words, if an item 𝑗

is unjustly ranked better than another item 𝑖 , but in a position with
low visibility (such as 𝜎−1 ( 𝑗) = 900 under a top-heavy browsing
model), the producer of 𝑖 is unlikely to notice, while they are more
likely to observe the UDP and increase their dissatisfaction if 𝑗 is
very visible. According to this interpretation,𝑀𝐴𝐵 represents the
dissatisfaction of group 𝐴 with the ranking 𝜎 , due to their items
being unjustly ranked below the items of group 𝐵 (in expectation
over the browsing model 𝐹 (𝑘) and after normalization). Pairwise
fairness is thus connected to observed injustice, which can affect the
perceived quality of platform service [18, 28], and, in turn, influence
the loyalty of item producers [31]

User-centric interpretations, on the other hand, center on wasted
effort due to user attention being diverted to items of lower interest
from a different group. Users visit an item with probability 𝐹 (𝑘),
taking into account its group (say, 𝑔 = 𝐴). They evaluate how
much effort they wasted to reach this item because they examined
items of inferior relevance from different groups. According to this
interpretation, the counter measures wasted effort to reach items in
group 𝐴 that are unduly ranked below items in group 𝐵, and𝑀𝐴𝐵

represents a normalized expectation of cross-group wasted effort
over the browsing model.

4 TOWARD A DISSATISFACTION MEASURE
The fact that multiple interpretations are possible speaks to the flex-
ibility of pairwise measures in operationalizing multiple constructs.
Yet, both IGI and REE exhibit certain limitations when it comes
to capturing phenomena that occur in ranking systems and user
behavior in practice. In this section, we describe these limitations
and propose new formulations of pairwise fairness metrics that
address them.
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4.1 Individual pairwise fairness
Limitation. Just like aggregate performance measures can obscure
poor performance for groups of people [3, 22], group measures
can obscure poor performance for individuals. IGI and REE focus
on user groups, hiding the potential impact on individuals. This
section presents an individual pairwise fairness metric.
New formulation. We define an individual version of pairwise
fairness that captures the dissatisfaction of each ranked item (or
implicitly, the item’s producer):

𝑀𝑖 =

𝑛−1∑︁
𝑗=0

𝑑𝑈 (𝑖, 𝑗) (6)

Moreover, we may model the case where producers are especially
alert about discordant ranking with items from a certain group (for
example, marketplaces can selectively favor items based on brand
ownership [18, 28], making this attribute particularly salient [15]):

𝑀𝑖𝐴 =

𝑛−1∑︁
𝑗=0

𝑑𝑈 (𝑖, 𝑗) · 1( 𝑗 ∈ 𝐴); 𝑀𝑖𝐵 =

𝑛−1∑︁
𝑗=0

𝑑𝑈 (𝑖, 𝑗) · 1( 𝑗 ∈ 𝐵).

Note that the group fairness metrics defined in Eq. (1) can be derived
from these group-envy versions of individual fairness metrics as
follows:

𝑀𝐴𝐵 =
1

𝐶𝐴𝐵

∑︁
𝑖∈𝐴

𝑀𝑖𝐵 ; 𝑀𝐵𝐴 =
1

𝐶𝐵𝐴

∑︁
𝑖∈𝐵

𝑀𝑖𝐴

This property provides an intuitive connection between individual
and group perspectives, and guarantees that interventions at the
individual level, making𝑀𝑖 smaller ∀𝑖 ∈ {0, . . . , 𝑛 − 1}, will also be
beneficial at the group level for metrics𝑀𝐴𝐵 and𝑀𝐵𝐴 .

4.2 Top-heaviness
Limitation. Existing pairwise fairness metrics do not account for
realistic browsing behaviors. As we have shown in Section 3.1, REE
and IGI implicitly use a simple browsing model with a uniform visit
probability for all ranks. Yet, UDPs at the top of a ranking in practice
would be more visible (top ranking positions are more likely to be
visited by searchers) and thus cause greater dissatisfaction.
New formulation. Pairwise fairnessmeasures can be flexiblymodi-
fied, both at the individual and group levels, to account for a suitable
user browsing model 𝐹 (𝑘):

𝑀𝑖 =

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)𝑑𝑈 (𝑖, 𝜎 (𝑘))

In other words, the dissatisfaction𝑀𝑖 of the item 𝑖 is a weighted sum
of UDPs, with weights proportional to the probability of visiting
the item unfairly ranked better than 𝑖 .

We can also incorporate group membership into the individual
pairwise fairness measure defined in Sec. 4.1:

𝑀𝑖𝐵 =

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)𝑑𝑈 (𝑖, 𝜎 (𝑘)) · 1(𝜎 (𝑘) ∈ 𝐵)

and aggregate it to quantify cross-group dissatisfaction:

𝑀𝐴𝐵 =
1

𝐶𝐴𝐵

∑︁
𝑖∈𝐴

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)𝑑𝑈 (𝑖, 𝜎 (𝑘)) · 1(𝜎 (𝑘) ∈ 𝐵). (7)

Many top-heavy user models have been proposed and studied in
the literature, including logarithmic (𝐹 (𝑘) ∝ 1/log(𝑘) [27]) and
exponential discount (𝐹 (𝑘) ∝ 𝛾𝑘 [35]) models.

4.3 Tie handling
Limitation.Measures of pairwise fairness do not account for ties in
relevance scores 𝑟𝑖 , a common occurrence in practical applications.
In recommender systems, for example, user ratings are often quan-
tized [25], while, in information retrieval, relevance judgements
are typically discrete (either binary or graded) [24]. IAS which pri-
oritize a group by frequently breaking ties in its favour are not
detected as problematic by either IGI or REE.
New formulation. Recall that 𝜎∗ = argsort(𝑟𝑖 ). We can rewrite
the indicator function for UDPs as:

𝑑𝑈 (𝑖, 𝑗) = 1(𝜎−1 (𝑖) > 𝜎−1 ( 𝑗), 𝑟𝑖 > 𝑟 𝑗 )
showing that relevance ties are unaccounted for. We propose to
generalize the notion of UDP to handle ties as:

𝑑𝑈 (𝑖, 𝑗) =1(𝜎−1 (𝑖) > 𝜎−1 ( 𝑗), 𝑟𝑖 > 𝑟 𝑗 )
+ 𝑐𝑡1(𝜎−1 (𝑖) > 𝜎−1 ( 𝑗), 𝑟𝑖 = 𝑟 𝑗 ) (8)

where 𝑐𝑡 models the dissatisfaction of an item ranked below another
item of the same relevance. We call this case a partial UDP. Possible
values for 𝑐𝑡 range in (0, 1), where 𝑐𝑡 = 1 corresponds to equating
partial UDPs to proper UDPs, while 𝑐𝑡 = 0 indicates indifference to
comparisons with items of the same relevance.

4.4 Normalization
Limitation. Recall that IGI and REE can be written as:

𝑀
IGI,REE
𝐴𝐵

=
1

𝐶
IGI,REE
𝐴𝐵

·
∑︁
𝑖∈𝐴

∑︁
𝑗 ∈𝐵

𝑑𝑈 (𝑖, 𝑗)

with different normalizing constants:

𝐶IGI
𝐴𝐵

=
∑︁
𝑖∈𝐴

∑︁
𝑗 ∈𝐵

1(𝑟𝑖 > 𝑟 𝑗 ); 𝐶REE
𝐴𝐵

= 𝑁𝐴 · 𝑁𝐵, (9)

where 𝑁𝐴 and 𝑁𝐵 denote the number of items in I that belong
to group 𝐴 and 𝐵, respectively. In other words, IGI is normalized
with respect to a worst-case scenario which takes into account the
ground truth relevance 𝑟𝑖 and its distribution between groups, while
REE is normalized with respect to the a-priori worst case which
does not take 𝑟𝑖 into account. As a result, the normalizing constant
in REE is the same for𝑀𝐴𝐵 and𝑀𝐵𝐴 (𝐶REE

𝐴𝐵
= 𝐶REE

𝐵𝐴
), while for IGI

they typically differ (𝐶IGI
𝐴𝐵

≠ 𝐶IGI
𝐵𝐴

).
The normalization scheme for IGI has a downside—it becomes

unclear how to compare𝑀 IGI
𝐴𝐵

and𝑀 IGI
𝐵𝐴

. Let us visualize this issue
with a toy example where 𝐹 (𝑘) = 1,∀𝑘 , and the ideal ranking is
𝜎∗ = [𝑖𝐴0 , 𝑖

𝐵
1 , 𝑖

𝐴
2 , 𝑖

𝐴
3 ]; here, for ease of exposition, superscript 𝑔 in

𝑖𝑔 denotes membership of 𝑖 in group 𝑔. In this situation, we have
different constants for IGI (𝐶IGI

𝐴𝐵
= 1, 𝐶IGI

𝐵𝐴
= 2) and equal constants

for REE (𝐶REE
𝐴𝐵

= 𝐶REE
𝐵𝐴

= 3). A ranking 𝜎 = [𝑖𝐴2 , 𝑖
𝐵
1 , 𝑖

𝐴
0 , 𝑖

𝐴
3 ], obtained

by exchanging 𝑖𝐴0 and 𝑖𝐴2 in 𝜎∗, produces two UDPs, one (𝑖𝐴0 , 𝑖
𝐵
1 )

in favor of group 𝐵 and another (𝑖𝐵1 , 𝑖
𝐴
2 ) in favor of group 𝐴. The

resulting measures for IGI are 𝑀 IGI
𝐴𝐵

= 1 ≫ 𝑀 IGI
𝐵𝐴

= 0.5. Taken
at face value, this suggests that group 𝐵 is largely favored over
group 𝐴, and that the latter should be more dissatisfied with 𝜎 than
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the former. We argue that this is not necessarily true since, from
a groupwise perspective, 𝜎 and 𝜎∗ are equivalent. In fact, under
IGI, comparing 𝑀 IGI

𝐴𝐵
and 𝑀 IGI

𝐵𝐴
is not straightforward. This is a

very practical problem, since fairness, according to Equation (2), is
defined precisely as the difference between these quantities.
New formulation. We propose an REE inspired normalization
scheme, using the same constant for𝑀𝐴𝐵 and𝑀𝐵𝐴 , independently
of the relevance scores. In Equation (7). we define:

𝐶𝐴𝐵 = 𝐶𝐵𝐴 = max

(
𝑁𝐴 ·

𝑁𝐵−1∑︁
𝑘=0

𝐹 (𝑘), 𝑁𝐵 ·
𝑁𝐴−1∑︁
𝑘=0

𝐹 (𝑘)
)

(10)

Inside the max(·) function, the first term represents a worst-case
scenario in which every item in group 𝐵 is unduly ranked above
every item in group 𝐴 (hence the multiplying factor 𝑁𝐴) and oc-
cupies the most visible ranking positions (hence the summation).
Analogously, the second term represents the case where every item
in group 𝐴 is unduly ranked above every item in group 𝐵.

This formulation has two desirable properties: (1) the difference
𝑀𝐴𝐵 −𝑀𝐵𝐴 (the unfairness measure) is bounded between (−1, 1)
and (2) the sign of the measure identifies the (dis)advantaged group,
since positive (negative) values correspond to rankings 𝜎 with more
visible UDPs against group 𝐴 (𝐵).

5 DISSATISFACTION INDUCED BY PAIRWISE
SWAPS

Based on the proposed reformulations, we define a pairwise fairness
measure termed Dissatisfaction Induced by Pairwise Swaps (DIPS):

𝑀DIPS
𝐴𝐵

=
1

𝐶DIPS
𝐴𝐵

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)𝑑𝑈 (𝑖, 𝜎 (𝑘)) · 1(𝑖 ∈ 𝐴, 𝜎 (𝑘) ∈ 𝐵),

(11)

DIPS (i) handles ties through parameter 𝑐𝑡 in the definition of 𝑑𝑈 (·)
in Equation (8), (ii) is normalized with a group-symmetric constant
according to Equation (10), and (iii) inherits a top-heavy behavior
from a suitable browsing model 𝐹 (𝑘). Browsing models capture the
fact that dissatisfaction is more likely to occur when unfair swaps
happen at highly exposed ranking positions. The tunable param-
eters for DIPS are the browsing model 𝐹 (𝑘) and the tie-handling
constant 𝑐𝑡 . For the latter, we recommend an intermediate value
𝑐𝑡 = 0.5, while the former depends on the application and should
be tuned to context-specific browsing behaviour.

Exposure-based measures are a popular family of fairness met-
rics typically also grounded in browsing models [7, 8, 40]. In the
remainder of this section, we study the relationship between DIPS
and exposure-based fairness.

5.1 Review of exposure-based fairness
Exposure-based measures, in their groupwise version, define an
ideal target exposure (𝑇𝐴,𝑇𝐵 ) for each group and measure the dis-
tance between this target and actual exposure (𝐸𝐴, 𝐸𝐵 ) in ranking
𝜎 . We define the normalized misallocation vector as:

𝛿𝜎 = [𝛿𝜎
𝐴
, 𝛿𝜎

𝐵
] =

[
𝑇𝐴

𝑇𝐴 +𝑇𝐵
− 𝐸𝐴

𝐸𝐴 + 𝐸𝐵
,

𝑇𝐵

𝑇𝐴 +𝑇𝐵
− 𝐸𝐵

𝐸𝐴 + 𝐸𝐵

]
(12)

where, for a given group 𝑔, 𝐸𝑔 is the sum of individual exposure
values granted by 𝜎 to items in group 𝑔: 𝐸𝑔 =

∑
𝑖∈𝑔 𝐹 (𝜎−1 (𝑖)). To

compute the overall unfairness of ranking 𝜎 , we follow Biega et al.
[8], and report the ℓ1 norm of 𝛿𝜎 . We consider three measures
that differ in their normative reasoning for establishing the target
exposure quotas.
Equity of Attention. According to Equity of Attention (EA) [8],
the target exposure for a group 𝑔 should be proportional to the sum
of the relevance of the items in 𝑔:

𝑇 EA
𝑔 =

∑︁
𝑖∈𝑔

𝑟𝑖 (13)

Under a different normative reasoning, we can define a version
of EA inspired by demographic parity [4, 11], which requires that
each group receives a share of attention that is proportional to the
group’s representation in the overall population:

𝑇
EA-dp
𝑔 = 𝑁𝑔/𝑁 . (14)

Expected Exposure. Expected Exposure (EE) [17] also relies on
relevance scores to specify its target exposure; however, unlike
EA, it assigns ordinal validity to relevance judgements: if item 𝑖

is more relevant than (or as relevant as) 𝑗 , it should get more (or
as much) exposure. This property should be contrasted with EA,
which assigns a scale ratio validity to relevance judgements: if item
𝑖 is twice as relevant as 𝑗 , it should get twice as much exposure.
The amount of exposure in EE is not explicitly specified by the
normative reasoning and is determined by the browsing model
𝐹 (𝑘) in practice. Numerically, the target exposure in EE can be
expressed as:

𝑡𝑖 = mean{ 𝑗 |𝑟 𝑗=𝑟𝑖 } (𝐹 (𝜎
−1
∗ ( 𝑗))) (15)

𝑇 EE
𝑔 =

∑︁
𝑖∈𝑔

𝑡𝑖 (16)

where 𝑡𝑖 is the exposure target quota for item 𝑖 . In a simple setting
without relevance ties, 𝑡𝑖 is equal to the exposure granted to 𝑖 by
the ideal ranking 𝜎∗ under 𝐹 (𝑘). If ties are present, 𝑡𝑖 is the average
exposure granted by 𝜎∗ to items of the same relevance as 𝑖 .

5.2 DIPS and exposure-based fairness
According to exposure-based measures, individual misallocation is
the difference between the target exposure quota of an item and
its actual exposure 𝐹 (𝜎−1 (𝑖)), i.e., its probability of a visit by a
searcher given ranking 𝜎 . For example, EA defines the target quota
of an item as its share of overall relevance 𝑐𝑖 = 𝑟𝑖/

∑
𝑖′ 𝑟𝑖′ . Under

EA, individual misallocation𝑀𝑖 can be written as:

𝑀EA
𝑖 = 𝑐𝑖

𝑛−1∑︁
𝑖′=0

𝐹 (𝜎−1 (𝑖 ′)) − 𝐹 (𝜎−1 (𝑖))

=

𝑛−1∑︁
𝑘=0

𝑝𝑠 (𝜎 (𝑘))
[
𝑐𝑖 (𝑘 + 1) − Pr(𝜎−1 (𝑖) ≤ 𝑘)

]
,

where 𝑝𝑠 (𝜎 (𝑘)) denotes the probability of a user stopping brows-
ing at position 𝑘 , and 𝐹 (𝑘) is the resulting probability of a visit.2

2Under cascade (sequential) browsing models, the probability of receiving a visit at
rank 𝑘 is equal to the sum of the probability of stopping at any rank greater than or
equal to 𝑘 [12]: 𝐹 (𝑘) = ∑𝑛−1

𝑘′=𝑘 𝑝𝑠 (𝜎 (𝑘′)) .
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Moreover, recall that DIPS at the item level can be expressed as:

𝑀DIPS
𝑖 =

𝑛−1∑︁
𝑘=0

𝐹 (𝑘)𝑑𝑈 (𝑖, 𝜎 (𝑘))

=

𝑛−1∑︁
𝑘=0

𝑝𝑠 (𝜎 (𝑘))
𝑘∑︁

𝑘′=0
𝑑𝑈 (𝑖, 𝜎 (𝑘 ′))

These formulas show that EA and DIPS can both be expressed as
a sum, weighted by stopping probabilities 𝑝𝑠 (𝜎 (𝑘)), of two quan-
tities that are directly related: DIPS counts the number of UDPs
for the item 𝑖 up to rank 𝑘 , while EA computes the (negative) prob-
ability Pr(𝜎−1 (𝑖) ≤ 𝑘) that item 𝑖 is among the top 𝑘 . One can
expect the probability of an item being in the top ranks to de-
crease with the number of its UDPs. For this reason, we expect
DIPS and exposure-based measures to exhibit certain similarities in
practice. At the same time, these measures operationalize different
constructs; hence, we expect them to capture different properties of
rankings. For example, a ranking can assign to an item 𝑖 its ideal ex-
posure quota (𝑀𝐸𝐴

𝑖
= 0), while granting the most visible positions

to items of lesser relevance, thus causing substantial dissatisfaction
of 𝑖 due to highly visible UDPs (𝑀𝐷𝐼𝑃𝑆

𝑖
≫ 0).

6 EXPERIMENTS
DIPS is a measure of pairwise fairness, yet it is grounded in brows-
ing models like exposure-based fairness. In this section, we em-
pirically study the similarities and differences between DIPS, pair-
wise measures, and exposure-based measures on synthetic and
real-world datasets.

6.1 Synthetic data
To compare fair ranking measures in a principled fashion, we build
a synthetic dataset with full control on group representation, merit,
and ranking policies. We consider a controlled setting with a binary
sensitive attribute 𝑔 ∈ {𝐴, 𝐵}, where groups have equal representa-
tion over a total of 𝑁 = 1, 000 items, and with sizeable differences
in relevance scores. More specifically, we set 𝑁𝐴 = 𝑁𝐵 = 500, and
draw relevance scores from group-specific, uniform distributions
𝑓𝐴 (𝑟𝑖 ) = unif (0.5, 1) and 𝑓𝐵 (𝑟𝑖 ) = unif (0.2, 0.7). In other words, all
items of high relevance (0.7 < 𝑟𝑖 ≤ 1) belong to group 𝐴, items of
intermediate relevance (0.5 ≤ 𝑟𝑖 ≤ 0.7) belong to both groups with
the same probability, and low relevance items (0 ≤ 𝑟𝑖 < 0.5) are
entirely from group 𝐵. The distribution of relevance scores between
groups is depicted in panel (1) of Figure 1a. We choose the browsing
model underlying rank biased precision [35], modeling a top-heavy
probability of visit with exponential decay: 𝐹 (𝑘) = 𝛾𝑘 , 𝛾 = 0.9.

6.1.1 Experimental condition 1: systematic group advantage.
Setup. To be able to compare metrics under controlled unfairness
conditions, we create a rank promotionmechanism that allows us to
control the amount of unfairness relative to a ranking purely based
on relevance. In this experiment, the mechanism advances the 20
most relevant items from group 𝐵. We vary the top destination rank
𝑘 for the promoted items, with 𝑘 in (0, 99). For example, setting
𝑘 = 0, we promote the 20 most relevant items from 𝑔 = 𝐵 to the
ranks {0, 1, . . . , 19}, while the relative positions of the remaining

items remain unchanged, i.e., their rank increases according to
𝜎−1 (𝑖) = 𝜎−1

∗ (𝑖) + 20.
Results. The results of this experiment are reported in Figure 1a.
The values of𝑀𝐴𝐵 −𝑀𝐵𝐴 (Equation 2) for REE and DIPS are shown
in panel (2). No promotion takes place in favour of 𝑔 = 𝐴, hence
𝑀𝐵𝐴 = 0. DIPS is very sensitive to the promotion rank of items in
group 𝐵, showing an exponential decay, while REE is mostly flat.
Furthermore, the value 𝑀DIPS

𝐴𝐵
> 0.5 for 𝑘 = 0 captures a strong

dissatisfaction, while𝑀REE
𝐴𝐵

≪ 0.1 is much smaller in comparison.
The remaining panels concentrate on three exposure-based mea-

sures (EE, EA, EA-dp). Panel (3) of Figure 1a reports the aggregate
measure |𝛿𝜎 |1, i.e., the ℓ1 norm of the misallocation vector in Equa-
tion (2), while Panel (4) reports the groupwise measure 𝛿𝜎

𝐴
for

group 𝐴, i.e., the first component of Equation (2). The groupwise
misallocation in panel (4) clearly shows a monotonic trend with
exponential decay, as expected from the browsing model 𝐹 (𝑘). It
is worth recalling that positive values indicate underexposure for
group 𝐴. Promoting items from group 𝐵 to the most visible posi-
tions reduces the exposure 𝐸𝐴 available for group 𝐴, and therefore
𝛿𝜎
𝐴
increases as items from group 𝐵 are promoted to better posi-

tions, corresponding to lower values of 𝑘 on the 𝑥 axis. It should
be noted that the aggregate measure (|𝛿𝜎 |1) in panel (3) derives
directly from the groupwise measure 𝛿𝜎

𝐴
in panel (4). In the binary

case considered in this example, it is equal to twice its absolute
value, since |𝛿𝜎 |1 = 2 · abs(𝛿𝜎

𝐴
).

Interpretation. The large value𝑀DIPS
𝐴𝐵

> 0.5 for 𝑘 = 0 captures the
strong dissatisfaction that is likely to arise in group𝐴 if many items
in another group were unfairly promoted to the top ranks—unfairly
in the sense that they do not reflect the merit reflected in 𝑟𝑖 and 𝜎∗.
A large value for𝑀DIPS

𝐴𝐵
adequately summarizes a situation where

items in group𝐴 are highly dissatisfied, as the promoted items form
visible UDPs with most items from group 𝐴. The same is not true
for 𝑀REE

𝐴𝐵
≪ 0.1, suggesting that, under the (implicit) normative

reasoning of REE, the dissatisfaction of group 𝐴 would be very far
from its theoretical maximum.

Turning to exposure-based measures, the disaggregated mea-
sures 𝛿𝜎

𝐴
, depicted in panel (4), are equal up to a constant, which

depends on the differences in their normative reasoning presented
in Section 5.1. Moreover, these measures have the same profile as
DIPS in the left panel. As discussed in Section 5.2, UDPs (in the ab-
sence of FDPs) directly result in missed exposure and higher values
of EA, EA-dp, and EE. Since the same top-heavy browsing model
𝐹 (𝑘) is assumed across these measures, they end up having a simi-
lar profile with exponential decay. Hence, if item producers have a
notion of merit 𝑟𝑖 , any intervention that assigns exposure to a group
beyond its merit, as encoded by 𝑟𝑖 , may generate a proportional
amount of dissatisfaction in the remaining groups.

6.1.2 Experimental condition 2: relevance ties.
Setup. Relevance ties are common in ranking problems and datasets
[24, 25, 34, 47]. To study the behavior of DIPS and related measures
in the presence of ties, we round relevance scores in the synthetic
dataset to the nearest integer, leaving us with binary values 𝑟𝑞

𝑖
=

round(𝑟𝑖 ), depicted in panel (1) of Figure 1b. We consider rankings
of maximum utility 𝜎 = argsort(𝑟𝑞

𝑖
) where we vary the tie breaking

policy. At each position of the ranking 𝜎 , a policy places the item of
maximum relevance among those that have not already been placed
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(a) Synthetic data: systematic group advantage.

(b) Synthetic data: relevance ties.

(c) Real-world data: fairness intervention to ensure minimum representation.

Figure 1: Distribution of relevance 𝑟𝑖 (1) and comparison of pairwise fairness measures REE and DIPS (2) with exposure-based
measures EE, EA, EA-dp: |𝛿𝜎 |1 (3) and 𝛿𝜎

𝐴
(4).

in better positions; if items of the same relevance are available from
both groups, we draw the best available item from 𝑔 = 𝐴 with
probability 𝑝𝐴 ∈ {0, 0.1, . . . , 1}, or from 𝑔 = 𝐵 with probability
𝑝𝐵 = 1 − 𝑝𝐴 . We consider a tie-aware and a tie-indifferent variant
of REE and DIPS, obtained by setting 𝑐𝑡 = 1 and 𝑐𝑡 = 0, respectively,
in Equation (8).
Results. Figure 1b shows the values for each measure, averaged
over 100 repetitions. Panel (2) shows both versions of REE and DIPS.
As expected, the tie-indifferent variant of both measures is flat at
zero. Indeed, 𝜎 = argsort(𝑟𝑞

𝑖
) is a meritocratic ranking; therefore,

there are no proper UDPs. For 𝑐𝑡 = 1, both DIPS and REE span a
wide range of values, capturing the large dissatisfaction between
groups that is likely to arise in this setting with ranking policies
that systematically favor one group over another in case of ties.

EE, EA, and EA-dp are represented in panels (3)-(4), with their
aggregate (|𝛿𝑔 |1) and groupwise component (𝛿𝜎

𝐴
), respectively. The

difference between EE and EA is negligible in this setting and they

are therefore indistinguishable in the plots. Overall, EA and EE
have the same profile as the tie-aware version of DIPS.
Interpretation. Measures of pairwise fairness can aptly model
dissatisfaction in contexts where relevance ties are present, a situa-
tion that is fairly common in ranking problems. This is achieved
by extending the concept of UDP to account for relevance ties. If,
instead, we stick to the regular definition of UDP, any systematic
advantage for one group will go unnoticed, as testified by the (con-
stant and null) values of REE and DIPS instantiated with 𝑐𝑡 = 0.
Furthermore, this experiment confirms a close connection between
DIPS and exposure-based measures.

6.2 Real-world data
In this section, we complement our discussion of similarities and
differences between pairwise and exposure-based fairness mea-
sures by experimenting with a real-world dataset and a popular fair
ranking intervention. We use the Entrepreneurs dataset [21], which
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consists of a list of US startup founders who received Series A fund-
ing in the last 5 years, obtained from Crunchbase.3 Entrepreneurs
are ranked by inflation-adjusted funding, which is considered the
merit parameter 𝑟𝑖 , reported in panel (1) of Figure 1c. The sensitive
attribute is binary gender, with a representation ratio of 9:1 in favor
of men (group 𝐴). Notice that the 𝑦 axis is broken, to highlight
the prevalence of items of low relevance from the group 𝐴, while
favoring readability at higher values of 𝑟𝑖 .

6.2.1 Enforcing minimum representation.
Setup. We deploy the fairness intervention of Zehlike et al. [43], im-
posing a minimum representation for the protected group (women).
More specifically, we require a minimum percentage 𝑝min = 0.5 of
women in every prefix of the final ranking, up to a given ranking
position 𝑘 . In this experiment, we vary 𝑘 ∈ {0, . . . , 100}.

As a motivating example for such an intervention, consider a
trade magazine that compiles a chart of successful entrepreneurs
with attention to gender representation. Relevance and gender rep-
resentation goals can be achieved with a ranking 𝜎 that is aware
of the raised funding while featuring a minimum percentage of
women in every prefix up to a given rank 𝑘 . Low values of 𝑘 corre-
spond to mild gender parity requirements, enforced only at the top
positions of the ranking (up to 𝑘). On the other hand, high values
of 𝑘 correspond to more strict requirements, where the minimum
representation must also be maintained further down the ranking.
Results. The results of this experiment are reported in Figure 1c.
Panel (2) focuses on REE and DIPS. The latter increases sharply for
small values (𝑘 < 20), where an increased representation corre-
sponds to highly visible UDPs under a top-heavy browsing model.
Around rank 𝑘 = 40 DIPS becomes flat, as these ranks have low
visibility. REE also increases with 𝑘 , but, unlike DIPS, the increase
accelerates with 𝑘 . This is due to the fact that, to satisfy the mini-
mum representation requirement, the number of UPDs increases
superlinearly with 𝑘 .

EE, EA, and EA-dp are represented in panels (3)-(4). The group-
wise measure displays a concave profile, similar to DIPS, since
promotions after rank 𝑘 = 40 have a negligible impact on expo-
sure. As usual, EE is minimized by the null manipulation 𝑘 = 0;
EA and EA-dp are very close to it as, in this particular setting,
women entrepreneurs have a low overall representation (𝑇 EA-dp

𝐵
=

𝑁𝐵/𝑁 ≃ 0.1) and, subsequently, a low share of the overall relevance
(𝑇 EA
𝐵

=
∑
𝑖∈𝐵 𝑟𝑖/

∑
𝑖 𝑟𝑖 ≃ 0.1). The sizeable values of EE, for 𝑘 ≥ 40,

suggest that group 𝐵 (women) gains a significant exposure from
this intervention, clearly at the expense of group 𝐴 (men).4

DIPS, on the other hand, has low values |𝑀DIPS
𝐴𝐵

−𝑀DIPS
𝐵𝐴

| ≪ 0.1.
This is due to the fact that the women entrepreneurs occupying
these highly visible positions in the final ranking 𝜎 have greater
relevance (𝑟𝑖 ) than most of the other entrepreneurs. In other words,
despite a substantial visibility gain for female entrepreneurs, the
most visible positions occupied by them do not represent a UDP
for most male entrepreneurs. For example, when 𝑘 ≥ 20, among
the twenty most visible positions, accounting for more than 80% of
overall exposure, we find ten female entrepreneurs who are in the
top decile for raised funding overall. This follows from the fact that
the fairness manipulation used is aware of relevance, so women
3https://crunchbase.com/
4Recall that 𝛿𝜎

𝐴
is a normalized quantity, i.e., 0 ≤ 𝛿𝜎

𝐴
≤ 1

entrepreneurs with higher 𝑟𝑖 are promoted first. Different ranking
policies, naïvely enforcing representation without paying attention
to relevance, would yield high values of DIPS.
Interpretation. On the one hand, this experiment shows that,
when DIPS and exposure-based measures are instantiated with the
same top-heavy browsing model 𝐹 (𝑘), they are similarly influenced
by fairness interventions toward the top of a ranking, while ignoring
swaps at less visible positions; they display similar profiles as a
result. On the other hand, the absolute values of these measures
can differ substantially. In essence, exposure-based measures are
based on a comparison between groupwise merit and groupwise
representation among the most visible items in the final ranking.
Although DIPS is focused similarly on the most visible items, it
takes into account their individual merits. For instance, an item
whose relevance is in the highest decile can be promoted to the most
visibile position, i.e, with a sizeable impact on exposure, without
increasing the dissatisfaction counter of most items, i.e., with a
small impact on the aggregate DIPS measure. While showing some
clear similarities, DIPS and exposure-based measures operationalize
different constructs and capture different properties. Overall, our
analyses show that fairness-enhancing interventions in ranking
may cause dissatisfaction for non-protected groups, but merit-based
policies will mitigate this downside.

7 CONCLUSION
In this paper, we have provided a normative grounding for pair-
wise fairness measures (Inter-Group Inaccuracy (IGI) [5] and Rank
Equality Error (REE) [32]), retrospectively mapping the measured
construct to producer dissatisfaction induced by a non-meritocratic
ranking, which is related to, yet different from, the construct of
equitable exposure allocation.

We have highlighted the limitations of REE and IGI in capturing
behavioral and practical aspects of rankings in information access
systems, deriving a new measure called Dissatisfaction Induced by
Pairwise Swaps (DIPS) to address them. DIPS operationalizes per-
ceptions of injustice by ranked producers when they are positioned
below less relevant items from other groups.

Finally, we have studied the relationship between DIPS, pair-
wise, and exposure-based fairness measures, including Equity of
Attention and Expected Exposure. We have shown how to ground
pairwise fairness in browsing models, highlighting the similarities
between exposure-based measures and DIPS. At the same time,
we have stressed the differences between the two families of mea-
sures which arise as they operationalize fundamentally different
constructs.

Overall, this work grounds and generalizes measures of pairwise
fairness, situates them more precisely in the practical context of
information access systems, and contributes to the debate on the
normative reasoning behind algorithmic fairness measures.
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