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ABSTRACT
Online service providers gather vast amounts of data to build user
pro�les. Such pro�les improve service quality through personaliza-
tion, but may also intrude on user privacy and incur discrimination
risks. In this work, we propose a framework which leverages soli-
darity in a large community to scramble user interaction histories.
While this is bene�cial for anti-pro�ling, the potential downside is
that individual user utility, in terms of the quality of search results
or recommendations, may severely degrade. To reconcile privacy
and user utility and control their trade-o�, we develop quantitative
models for these dimensions and e�ective strategies for assigning
user interactions to Mediator Accounts. We demonstrate the viabil-
ity of our framework by experiments in two di�erent application
areas (search and recommender systems), using two large datasets.

KEYWORDS
Anti-Pro�ling, Privacy, User Utility, Personalization, Mediator Ac-
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1 INTRODUCTION
Motivation: Users are pro�led and targeted in virtually every
aspect of their digital lives: when searching, browsing, shopping, or
posting on social media. �e gathered information is used by service
providers to personalize search results, customize ads, provide
di�erential pricing, and more [19, 42]. Since such practices can
greatly intrude on an individual’s privacy, the goal of our research
is to devise a mechanism to counter such extensive pro�ling.

A careful user can largely preserve her privacy by taking mea-
sures like anonymizing communication or using online services
only in a non-linkable manner (for instance, by changing accounts
or pseudonyms on a regular basis). However, this comes at the
cost of greatly reducing utility, both for the service providers and
the user. On the one hand, the service provider will miss out on
learning from the same user’s long-term behavior, which may result
in less e�ective systems. �is issue of system-level utility has been
studied in the past research on privacy [20, 23]. On the other hand,
the individual user will experience degraded service quality, such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080830

as poor search results, as the service provider would not under-
stand the user’s interests and intentions. �is notion of user-level
utility has not been extensively explored in prior work. Our paper
formalizes the trade-o� between a user’s pro�ling privacy and her
individual utility.

State of the art and its limitations: Research in privacy has
primarily addressed the disclosure of critical properties in data
publishing [5, 7, 13]. Common techniques include coarsening
the data so that di�erent users become indistinguishable (e.g., k-
anonymity [41], l-diversity [26], and t-closeness [25]), or perturbing
the answers of an algorithm so that the absence or presence of any
record does not signi�cantly in�uence the output – the principle
of di�erential privacy [11]. �ese methods consider notions of
utility that re�ect a system-level error in an analytical task, such as
classi�cation. In contrast, our goal is to prevent detailed pro�ling
and targeting while keeping the individual user utility as high as
possible, for example, in terms of the quality of personalized search
results or product recommendations.

For privacy-preserving search, many approaches have been pro-
posed based on query obfuscation [14, 33]. In these solutions, queries
are generalized to hide their actual intentions, or additional dummy
queries are generated to prevent accurate pro�ling. Both techniques
come at the cost of largely reducing user utility. Similar obfuscation-
based techniques have been explored for recommenders [17, 27].
However, none of the prior work addressed the trade-o� between
privacy and user utility in a quantitative manner. A few meth-
ods [8, 33] have considered an entire user community as a means
for query obfuscation. �is idea is related to our approach in this
paper – we generalize it and make it applicable in the context of
anti-pro�ling.

Approach and contribution: Our approach to reconcile pri-
vacy and user utility builds on the following observation: service
providers o�en do not need a complete and accurate user pro�le
to return personalized results. �us, in accordance with the need-
to-know principle, we assign user requests to Mediator Accounts
(MA) mimicking real users, such that (i) individual user pro�les
are scrambled across MAs to counter pro�ling, while (ii) coherent
fragments of a user’s pro�le are kept intact in the MAs to keep
user utility high. We call this paradigm privacy through solidar-
ity. Speci�cally, MAs are constructed by split-merge assignment
strategies: spli�ing the interaction history of a user and merging
pieces of di�erent users together. Mediator Accounts are meant as
an intermediate layer between users and the service provider, so
that the provider only sees MAs instead of the real users.

Ideas along these lines have been around in the prior litera-
ture [15, 34–36, 44], but the formalization of the privacy - user-
utility trade-o� has never been worked out. In particular, to make
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Figure 1: Overview of the MA framework.

this idea viable, one needs to devise quantitative measures for the
e�ects of Mediator Accounts on privacy and utility. In addition,
a strategy is needed for assigning user requests to such accounts.
�e simplest approach of uniform randomization would be ideal
for privacy but could prove disastrous for user utility. �is pa-
per addresses these challenges within a framework of Mediator
Accounts. Our ideas are general enough to be applied to search
engines, recommender systems, and other online services where
personalization is based on the user interaction history. Our salient
contributions are:
• a model with measures for quantifying the trade-o� between
pro�ling privacy and user utility;

• the Mediator Accounts framework together with strategies for
assigning user interactions to MAs;

• comprehensive experiments with two large datasets: search
logs derived from the StackExchange Q&A community, and
Amazon product ratings.

2 FRAMEWORK OVERVIEW
2.1 Architecture
�e architecture of the Mediator Accounts framework is shown in
Fig. 1. It consists of three parties: users, a service provider (SP), and
a Mediator Accounts proxy (MA-proxy). A user pro�le consists of
a set of objects, such as queries, product ratings or other forms of
user interactions with the SP. Instead of issuing objects directly to
the SP, users pass them on to the MA-proxy together with some
context information. �e goal of the MA-proxy is to redistribute
the incoming objects on to mediator pro�les mimicking real users.
�e MA-proxy assigns each incoming object to a Mediator Account
o�ering the right context for the current object and user, and issues
the object to the SP from the chosen MA. Upon receiving a response
(for example, a result page or a product recommendation) from the
SP, the MA-proxy passes it back to the user. When an interaction
is over, the MA-proxy discards all linking information about the
original user and the object and remembers only the association
between the mediator account and the object. As a result, the
original user pro�les are scrambled across multiple MAs, and each
MA consists of data from multiple users.

2.2 Incentives of participating parties
Users. �e goal of a user participating in an MA system is to be
able to get high-quality personalized results, while not le�ing any
online provider (neither SPs nor theMA-proxy) keep her interaction
history and link it to her as an individual. �e MA-proxy has the
user interaction history scrambled across multiple accounts, and
no links between the objects and the real users are stored.

Users of anonymous services that do not o�er topical person-
alization, such as the DuckDuckGo, Startpage or Qwant search
engines, may be open to trading o� some privacy for enhanced
results through the MA framework.
Non-pro�ling service providers. �e incentive of a non-pro�ling
service provider would be to enhance personalization in the results,
without compromising on the non-pro�ling principle.
Pro�ling service providers. A big question is whether pro�ling
service providers would allow a third-party like an MA-proxy to
mediate between them and the users. While examples of such third-
parties already exist (the Startpage search engine uses Google as a
source of search results), we believe that (i) an MA-proxy being able
to group objects into realistic pro�les that yield similar analytics
results for the SP, and (ii) an MA-proxy being able to a�ract privacy-
wary users who would not otherwise use the pro�ling SP, would
be viable incentives for an SP not to block an MA service.
MA-proxy. An MA-proxy could be set up by individuals, or coop-
eratives of non-pro�ling SPs (to provide personalization without
accumulating real user pro�les), or by non-governmental orga-
nizations that promote online privacy. �e Electronic Frontier
Foundation is such an organization – a non-pro�t organization that
has built privacy-preserving solutions like Privacy Badger.

2.3 Trusted and adversarial parties
MA-proxy. Users opting for anMA service would need to trust that
it scrambles their pro�les across mediator accounts, and discards
the original pro�les as well as any identifying information once an
interaction (a single request or a session) is complete. A standard
approach to gain such trust would be to make the MA solution
open-source, enabling the code to be ve�ed by the community. A
real implementation of an MA framework would have to take into
account secure end-to-end communication channels between users
and SPs via the MA-proxy. �ese issues may be resolved using
encryption and security techniques (e.g., secure browser, onion
routing, etc.), and are outside the scope of this paper.
Provider. �e service provider is not exactly distrusted, but there
have been cases where user-related information has been leaked
or passed on beyond the original intentions – by sabotage, acquisi-
tion by other companies, or enforcement by government agencies.
By detaching users from pro�les and limiting their accuracy, the
potential damage is bounded.

Other risksmight result from service providers displaying privacy-
sensitive personalized ads, such as ads related to pregnancy or
health issues, especially when observed by others on a user’s screen.
�e architecture would allow an MA-proxy to support �ltering ads
and adjusting them to users’ topical interest. Such a con�guration
has indeed been found to be a preferable ad-serving setup in a user
study [1]. Ad �ltering, however, is orthogonal to this research.
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�ird parties. Pro�ling companies that operate outside the user-
provider connections are considered untrusted. �e same holds
for agglomerates of providers that aggregate and exchange user
data. A conceivable a�ack could be to guess a user’s a�ribute (e.g.,
whether she is pregnant) by combining (i) observations on the MAs
and (ii) observations on a set of accounts in a social network, using
statistical inference methods. �eMA framework aims to keep such
risks low by breaking observable associations between MAs and
real users, and limiting the pro�ling accuracy of the split-merge
superpositions of di�erent users that cannot be easily disentangled.

3 ASSIGNMENT MODEL
�e core of the MA framework is an algorithm for assigning user
objects to Mediator Accounts. To guide it on the privacy-utility
trade-o�s and to assess the quality of the output, we need measures
for quantifying the e�ect of an assignment on privacy and user
utility. �is section presents such measures, and the algorithm for
object assignment based on the split-merge concept.

3.1 Concepts and notation
We use the following notations:
• A setU of users u1 . . .up .
• A set O of objects o1 . . . os issued by users; the objects are
treated as unique even if they represent the same content. For
instance, a query folk music issued by user ui is treated as an
object distinct from the same query issued by uj . Analogously,
a product rating for a book (Folk Music History, 3.0) by ui
is distinct from the rating by uj for the same book, irrespective
of the rating value.

• A set M of mediator accountsm1 . . .mt to which objects are
assigned by the MA-proxy.

We reserve the symbols i, j,k for subscripts of users, objects, and
MAs. If user ui issues object oj , we write oj ∈ ui . Similarly, if oj is
assigned to MAmk , we write oj ∈mk .
Assignments. An assignment of objects on to MAs can be denoted
as an s × t matrix A of 0-1 values, where Ai j = 1 means that oi is
assigned tomj . If we think of the Cartesian product O × M as a
bipartite graph, then the assignment can be conceptualized as a
subgraph S ⊆ O ×M where each node of type O has exactly one
edge with one of theM nodes.

3.2 Objective
In a real application, an MA-proxy has to assign objects to accounts
in an online manner, one object at a time as input arrives. In this
paper, we focus on analyzing the model and assignments in an
o�ine se�ing, although the algorithm we devise can be applied in
both o�ine and online scenarios. �e o�ine case is useful for two
reasons. First, it is a foundation for understanding the underlying
privacy-utility trade-o�s. Second, performing o�ine assignment
on a set of initial user pro�les can address the cold-start problem
that a new MA-proxy would face. Using the notation from Sec. 3.1,
the MA o�ine assignment problem can be de�ned as follows:
• Given a set of objectsO belonging to a set of usersU , and the set

of mediator accountsM , compute an assignment matrix A that

optimizes a desired objective function for the privacy-utility
trade-o�.

�e MA online assignment problem is:
• Given an assignment A of past user objects to MAs and a newly
arriving object o of user u, �nd the best MA to which o should
be assigned with regard to a desired goal for the privacy-utility
trade-o�.

3.3 Measuring privacy gain
An ideal situation from the perspective of privacy is when the
objects from a user pro�le are spread across MAs uniformly at
random – this minimizes the object-level similarity of any MA to
the original pro�le. We thus measure privacy as the entropy of the
user distribution over MAs, formalizing these notions as follows.
Entropy. We introduce for each user ui an MA-per-user vector
~mui ∈ (N0)t with one counter (≥ 0) per MA, wri�en as ~mui =
〈xi1 . . . xi j . . . xit 〉 where xi j is the number of objects by user ui in
accountmj (such that

∑t
j=1 xi j = |ui |). We can cast this into anMA-

per-user probability distribution Φi = 〈ϕi1 . . .ϕi j . . .ϕit 〉 by se�ing
ϕi j = xi j/|ui | followed by smoothing (e.g., Laplace smoothing) so
that ϕi j > 0 for each j and ∑t

j=1 ϕi j = 1.
�e degree of ui ’s pro�le fragmentation can be captured by the

entropy of the distribution Φi . We can de�ne the MA-per-user
entropy as a measure of privacy gain (gain over having each user
exhibit her full individual pro�le):

privacy−дain(ui ) = Hi = −

t∑
j=1

ϕi j logϕi j (1)

�is quanti�es the spread of the user’s objects across accounts. �e
higher the entropy value, the higher the gain in pro�ling privacy.
Pro�le overlap. If a use-case requires a more user-interpretable
measure of privacy, an alternative is to minimize the maximum
pro�le overlap. For a user ui , this measure can be expressed as:

Oi =
tmax
j=1

|{o ∈ ui ∩mj }|

|ui |
(2)

�is measure of overlap can directly tell a user how much “error”
could be made by an adversary, who assumes one of the MAs is the
user’s pro�le. �e optimum for this measure, as with entropy, is
achieved when the objects are uniformly spread across accounts.
�us, in the following, we use entropy as our privacy measure, and
leave maximum pro�le overlap as a design alternative.

3.4 Measuring user utility loss
User utility loss measures to what extent an object ok of user ui
is placed out of context by mapping it to account mj . We de�ne
a real-valued function sim(·, ·) to measure the coherence of user
and MA pro�les: sim(oi ,oj ) ∈ [0,1] is a symmetric measure of the
relatedness between objects represented by oi and oj . In practice,
di�erent notions of relatedness can be used, based on object prop-
erties or usage. In se�ings where labels for topics or categories are
available, we can set sim(oi ,oj ) = 1 if oi and oj are issued by the
same user and have the same topic/category label, and 0 otherwise.
Generally, we assume that simmeasures are normalized with values
between 0 and 1.
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�e objects of userui form a context, typically with high pairwise
relatedness among the objects. When considering sets of objects as
a whole (rather than time-ordered sequences of object posts), we
can measure the normalized context coherence of an object ok in the
pro�le of user ui by:

coh(ok ,ui ) =

∑
ol ∈ui ,k,l sim(ok ,ol )

|ui | − 1
(3)

When ok is placed in MAmj , we analogously de�ne:

coh(ok ,mj ) =

∑
ol ∈mj ,k,l sim(ok ,ol )

|mj | − 1
(4)

�e utility loss of ui in a given MA assignment is then measured as
an average coherence loss over all user objects:

utility−loss (ui ) =

∑
ok ∈ui [coh(ok ,ui ) − coh(ok ,mj )]

|ui |
(5)

wheremj is the account containing ok in the given assignment.
�e normalization helps to account for varying sizes of user

pro�les. As a result, coherence values are always between 0 and
1, and utility loss is normalized to take values between −1 and 1.
Note that our utility measure assumes that the context coherence
can increase if an object is assigned to an MA with more similar
objects. Coherence increase will result in negative utility loss.

3.5 Assignment algorithms
�e role of an assignment algorithm is to scramble user objects
across accounts so as to satisfy a desired privacy-utility tradeo�
or optimize a corresponding objective function. In this paper, we
experiment with a number of assignment algorithms and study
their output quality.

3.5.1 Optimal assignment (O�line). �e trade-o� can be ex-
pressed as a joint non-linear optimization problem as follows:

max
A

min
u

[α · privacy дain(u) − (1 − α ) · utility loss (u)] (6)

Alternatively, one could optimize one of the two measures with
a constraint on the other. Solving this problem exactly, however,
is computationally expensive. If we use the less complex overlap
privacy measure, we could cast the problem into a �adratic In-
teger Program. However, this would have millions (|M | · |O |) of
variables; so it would remain intractable in practice. We thus do not
pursue this direction in this paper and instead consider a number
of heuristics. �e following are also suitable for the online case.

3.5.2 Profiling-tradeo� assignment. We aim to approximate the
combined objective function as follows. Let o be an object we want
to assign to one of the accounts mj . If we want to optimize for
privacy (i.e., entropy), we should choose an MA at random from a
uniform distribution over MAs:

Ppr iv (mj |o) =
1
|M |

(7)

If we want to optimize for utility, we could choose an MA that
o�ers the best coherence:

Putil (mj |o) =



1, ifmj =mmax

0, otherwise
(8)

wheremmax = argmaxmk coh(o,mk ).

Let α be a parameter that controls the trade-o� between privacy
and utility. We sample an MA according to the distribution:

P (mj |o) = α · Ppr iv (mj |o) + (1 − α ) · Putil (mj |o) (9)

In the o�ine case, we may choose an arbitrary order of objects
to feed into this assignment heuristic. In the online case, we process
objects ordered by the timestamps in which they are issued to the
MA-proxy. It is also worth noting that in an online se�ing users
could choose di�erent α for each object, deciding that some should
be assigned randomly, and some with the best possible context.

3.5.3 Random assignment. In this assignment, objects are as-
signed to accounts uniformly at random. �is is a special case
of the Pro�ling-tradeo� algorithm with α = 1. �is assignment
maximizes privacy.

3.5.4 Coherent assignment. Personalization is usually based on
semantically coherent parts of user pro�les. If we retain such
coherent fragments of a pro�le within the accounts, individual
utility should be preserved be�er than in a completely random
assignment. �e mode in which we assign an object to the account
that o�ers the best coherence is a special case of the Pro�ling-
tradeo� algorithm, in which we set α = 0. We refer to this method
as Coherent. �is assignment explicitly aims for the best utility
only, yet some privacy is gained as chunks of user pro�les get
assigned to MAs randomly.

4 MA IN SEARCH SYSTEMS
By analyzing query-and-click logs, search engines can customize
results to individual users. Such user pro�ling, however, may reveal
a detailed picture of a person’s life, posing potential privacy risks.
At the same time, personalization of a single query is o�en based
on only a subset of a user’s history. �us, as a �rst use case, we
apply the MA framework in a search engine se�ing, scrambling
the query histories of di�erent users across accounts.

4.1 Framework elements
In the search scenario, the elements of the framework described in
Sec. 3 are instantiated as follows. �e objects are keyword queries,
and user pro�les consist of sets (or sequences) of queries, possibly
with timestamps. Accounts contain re-assigned queries of di�erent
users. Object similarity can be understood as topical similarity
between queries, with topics being either explicit such as categories
or classi�er labels, or latent, based on embeddings. As a query is
characterized by a set (or weight vector) of topics, the similarity
can be computed, for instance, using (weighted) Jaccard overlap or
vector cosine. �e service provider in this se�ing is a search engine,
which, upon receiving a query from a given user pro�le, returns a
ranked list of documents personalized for that user. User utility is
measured by the quality of the result list.

4.2 Service provider model
�e ability of the MA framework to preserve utility while split-
ting user pro�les across accounts depends on a retrieval model for
ranking query answers. We use the language-model-based retrieval
technique [10], as described below.
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Let o ∈ u be a query of user u consisting of a number of words
w ∈ o, and D be the document collection. �e model retrieves
the results in two steps. First, it fetches a set of top-k documents
Do ⊆ D, each documentd ∈ D being scored by the query-likelihood
model with Dirichlet smoothing (parameter µD [10]):

score (o,d ) = log P (o |d ) =
∑
w ∈o

log
(
t fw,d + µD · P (w |D)

|Vd | + µD

)
(10)

where t fw,d is the count ofw in d , P (w |D) is the probability thatw
occurs in D, and |Vd | is the count of all words in d . For every user
u, we compute a personalization score as the log-probability of the
document d being generated from the user language model using
Dirichlet smoothing with parameter µU , where U is the set of all
users (or equivalently, the collection of their search histories):

score (d,u) = log P (d |u) =
∑
w ∈d

log
(
t fw,u + µU · P (w |d )

|Vu | + µU

)
(11)

where t fw,u is the count ofw in the search history of u, P (w |d ) is
the probability thatw occurs in d , and |Vu | is the count of all words
in the search history of u.

In the second step, documents d ∈ Do are re-ranked using a
linear combination of the two scores:

scoreu (o,d ) = γ · score (o,d ) + (1 − γ ) · score (d,u) (12)

In practice, γ would be set to a low value to put more importance
on personalization.

When we use the MA framework, the computations are similar.
�e notion of a user is simply replaced by an account m. �e
personalization stage is adjusted as follows: we compute score (d,m)
using P (d |m), which in turn is computed using t fw,m , µM and |Vm |
with Eq. 11. De�nitions of these quantities are analogous to their
user counterparts.

5 MA IN RECOMMENDER SYSTEMS
Recommendation platforms like online shops, movie review forums,
and music streaming sites, aggregate user interaction histories over
time. As in the search se�ing, there is a direct correlation between
the accuracy and completeness of user pro�les and the quality of
the obtained recommendations. �us, as a second use case, we
apply the MA framework to recommender systems.

5.1 Framework elements
Users of a recommendation platform rate di�erent items like movies,
books, and hotels. �ese item-rating pairs are the objects in the
pro�le of a user. An item belongs to a set of categories (e.g., movie
genres) from a taxonomy de�ned by the service provider. �e
object similarity function can be de�ned by topical similarity using
such categories or tags. Additionally or alternatively, similarity can
consider the ownership of objects, that is, whether two ratings are
by the same user or di�erent ones.

User utility here refers to the quality of recommendations. Rating
predictions for items unseen by a user are made based on the past
ratings of that user, as well as ratings of similar items by similar
users. �us, scrambling a user’s ratings across accounts, if not done
in a principled fashion, can potentially destroy user-item preference
pa�erns, and hence degrade the quality of rating prediction.

5.2 Service provider model
A widely deployed rating prediction algorithm is collaborative �l-
tering (CF) [22], which has been used by providers like Net�ix,
Amazon and Google [49]. In this model, the values of user-item
ratings are stored as a matrix, where rows represent users, and
columns represent items. CF maps both users and items into a low
dimensional (latent) space using matrix factorization, such that
user-item interactions (ratings) are modeled as inner products in
that space, r̂ (ui ,ok ) = qok Tpui , where pui ∈ Rf and qok ∈ Rf are
vector representations of the user ui and item ok in the latent space
with dimensionality f . CF avoids over��ing by adding a regular-
ization term to the objective function of the matrix factorization.
To learn the low-dimensional vectors (pui and qok ), the system
minimizes the regularized squared error on the set of known ratings
(Eq. 13) [22]:

min
q∗,p∗

∑
(ui ,ok )∈R

(r (ui ,ok ) −qok
Tpui )

2 + λ( | |qok | |
2 + | |pui | |

2) (13)

where R is the set of (ui ,ok ) pairs for which r (ui ,ok ) is known (the
training set of gold ratings), and λ is the regularization parameter.
�e trained model can then be used to predict ratings for unseen
(user, item) pairs using the expression for r̂ (ui ,ok ).

In the MA framework, the service provider no longer predicts the
ratings for users, but for mediator accounts. Speci�cally, it learns
a CF model from the MA-ratings data (triples of MA-id, item-id,
rating), and then makes predictions for the unseen (mj ,ok ) pairs.
As the ratings of an individual user are spread across di�erent
MAs, we need a method for propagating the predicted ratings from
the MAs back to the individual users. Assume that we need to
predict the rating r̂ (ui ,ok ) when the MAs are present. Under a
given assignment, ui ’s items are split across MAs {mj ∈ M } with a
distribution Φi (Sec. 3.3), where the fraction of ui ’s mass in some
mj is given by ϕi j . We assume that the MA-proxy has access to the
predicted ratings r̂ (mj ,ok ) from the service provider. We compute
the propagated rating r̂m (ui ,ok ) as the weighted sum of r̂ (mj ,ok ):

r̂m (ui ,ok ) =

|M |∑
j=1

ϕi j r̂ (mj ,ok ) (14)

6 EXPERIMENTS ON SEARCH
6.1 Experimental setup

6.1.1 Dataset. For lack of publicly available query logswith user
pro�les, we created a query log and a document collection using
the data from the Stack Exchange Q&A community (dump as of 13-
06-2016). We excluded the large so�ware subforums from outside
the Stack Exchange web domain (such as StackOver�ow), as they
would dominate and drastically reduce the topical diversity. �e
�nal dataset consists of ca. 6M posts of type ‘�estion’ or ‘Answer’
in 142 diverse subforums (e.g., Astronomy, Security, Christianity,
Politics, Parenting, and Travel).
Document collection. We use all posts of type ‘Answer’ as our
collection. �e resulting corpus contains 3.9M documents.
User query histories. We construct a query log from posts of
type ‘�estion’, as these re�ect users’ information needs. Each
question is cast into a keyword query selecting the top-l question
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words with the highest TF-IDF scores, where l is a random integer
between 1 and 5. We consider only users with at least 150 questions,
which yields a total of 975 users and 253K queries. Each query is
assigned a topical label, used for object similarity. We set this label
to the subforum where the original question was posted.

6.1.2 Service provider. For reproducible experiments, we base
our search engine model on the open-source IR system Indri [40].
Indri ranks query answers based on state-of-the-art statistical lan-
guage models with Dirichlet smoothing [10]. We use Indri to re-
trieve the top-100 results for every query from the entire corpus,
and implement user-personalized re-ranking ourselves (see Sec. 4.2).
We compute per-user language models from the original questions
to tackle sparsity. �e Dirichlet smoothing parameter is set to the
average document length (56 words), and γ is set to 0.1.

6.1.3 Empirical measures.
Privacy Gain. �e model entropy re�ects how scrambled the user
pro�les are. Yet from the perspective of a pro�ling adversary it
is rather the distribution over semantic topics that ma�ers. Em-
pirically, a proper way to measure privacy then is to compare the
original topic distribution per user against the topic distributions
of the MAs. �e minimum KL-divergence between pairs of these
distributions signi�es the privacy level:

emp−priv−дain(ui ) = min
mj ∈M

DKL (P
ui ‖ Qmj ) (15)

where Pui and Qmj refer to the user and MA pro�le distributions
over topics with add-one Laplace smoothing. We use subforums as
explicit labels for topics.
Utility Loss. Rankings of documents d for a query are derived
from scoreu (o,d ) and scorem (o,d ) (Eq. 12), respectively, where the
former refers to the query being issued by user u and the la�er to
the query being issued by the mediator accountm (see Sec. 4.2).
We quantify the empirical utility loss as the divergence between
the two rankings. We compute two measures: the loss in Kendall’s
Tau over the top-100 document rankings: 1 − KTau@100 (as the
personalization step considers the top-100 documents), and the loss
in Jaccard similarity coe�cient over the �rst 20 ranking positions:
1 − Jaccard@20 (as end-users typically care only about a short
pre�x of ranked results). For each user, we average these scores
over all queries.

6.1.4 Assignment methods.
Object similarity. We set sim(oi ,oj ) = 1 if both oi and oj belong
to the same user and to the same topic, and 0 otherwise. During
the assignment, this measure helps to keep related parts of a user
pro�le together.
Assignment algorithms. We run the Pro�ling-Tradeo� algorithm
varying α between 0 and 1 with a 0.1 increment, and se�ing the
number of MAs to be the number of users (975). With the chosen
object similarity, the special case of α = 0, i.e. the Coherent assign-
ment, results in spli�ing user pro�les into subforum chunks and
assigning each chunk to a randomly chosen account.

6.2 Results and insights
Aggregate trends. Table 1 presents the results on the model mea-
sures and empirical measures for di�erent values of the assignment
trade-o� parameter, macro-averaged over users. Recall that α = 0.0

Table 1: Search results with trade-o� parameter α for the
model (M) and empirical (E) measures.

α M-Priv-Gain M-Util-Loss E-Priv-Gain E-Util-Loss
(Entropy) (Coherence Loss) (Min. KL-div.) (1 - KTau@100)

Original 0.000 0.000 0.000 0.000
0.0 (Coh) 1.180 0.178 0.320 0.170

0.2 2.208 0.293 0.319 0.203
0.4 3.130 0.389 0.346 0.228
0.6 3.975 0.463 0.389 0.246
0.8 4.731 0.515 0.494 0.260

1.0 (Rand) 5.287 0.535 0.863 0.266

Figure 2: Model measures per user (search).

Figure 3: Empirical measures per user (search).

and α = 1.0 correspond to the special cases of Coherent and Ran-
dom assignments, respectively. �ese results need to be contrasted
with the baseline, denoted Original in the table, where each original
user forms exactly one account (i.e., no scrambling at all). Com-
pared to the baseline, all numbers are statistically signi�cant by
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Figure 4: E�ect of pro�le size and diversity (search).

paired t-tests with p < 0.01. For empirical utility loss, we report
Kendall’s Tau; the results for the Jaccard coe�cient are similar.

�e results show that the Pro�ling-Tradeo� assignments improve
privacy over the Original baseline (the topical KL-div. between
original users and MAs is increased) while keeping the utility loss
low. �is is largely true regardless of the exact choice of α . So
the MA framework provides a fairly robust solution to reconciling
privacy and utility, supporting the observation that high-quality
topical personalization does not require complete user pro�les.

With the α increasing, assignments become more random, so the
privacy increases and utility is reduced (but with a low gradient).
In this regard, the empirical measures re�ect the expected behavior
according to the model measures well.

Results per user. Figs. 2 and 3 show privacy and utility values
of each user, for the model and empirical measures, respectively.
Di�erent colors represent di�erent assignments, and each dot rep-
resents a user, with measures averaged over the user’s queries. We
have several observations:
• Higher privacy gain is correlated with higher utility loss. �e

Original assignment maps each user to the origin (0 utility loss,
but also 0 privacy gain). No assignment reaches the bo�om-
right area of the chart – which would be an ideal.

• Varying α not only tunes the privacy-utility tradeo� at the
community aggregate level, but also a�ects the variance over
individual user scores. �is suggests that we should further
explore choosing α on an individual per-user basis (which is
easily feasible in our framework, but is not studied in this paper).

• Even the Random assignment (α = 1.0) keeps utility reasonably
high. �is is due to the fact that random MAs – sampled from
queries in the community – end up being averaged rather than
random pro�les.

• Some users achieve high privacy gains without losing hardly
any utility, and vice versa. We investigate this further below.

E�ect of pro�le size and diversity. We analyze how di�erent
user pro�le characteristics a�ect the assignment results. Figure 4
presents the empirical trade-o�s for the Coherent (top row) and
Random (bo�om row) assignments, where each dot is a user and
the dot color represents (i) the logarithm of the number of queries
in the user pro�le (le� column), or (ii) the diversity of the pro�le
measured by the entropy of the distribution of queries across topics
(right column). We make the following observations:
• Users with more queries (darker dots) in the Coherent assign-
ment clearly gain privacy at the cost of losing utility, whereas
for the smaller pro�les (lighter dots), the trade-o� is not as
pronounced. In the Random assignment this trade-o� is less
pronounced irrespective of the size of the pro�le.

• In the right column, one can see the lighter dots (pro�les with
li�le diversity) moving from the bo�om-le� for the Coherent
assignment (li�le privacy gain, li�le utility loss) to the top-right
for the Random assignment (higher privacy gain, higher utility
loss). �is suggests that our framework does not o�er much
help to the users with uniform and focused interests. �is is
an inherent limitation, regardless of which privacy protection
is chosen. Such homogeneous users cannot hide their speci�c
interests, unless they give up on personalization utility.

• Our split-merge assignments o�er good results for users with
high diversity. As suggested by the darker dots, the Coherent
assignment leads to a lower utility loss and higher privacy
gain for users with diverse pro�les, when compared to the
Random assignment. �is is because such users have more
independent and internally coherent chunks that can be split
without a�ecting utility. �is class of users is exactly where the
right balance of utility and privacy ma�ers most, and where we
can indeed reconcile the two dimensions to a fair degree.

7 EXPERIMENTS ON RECOMMENDERS
7.1 Experimental setup

7.1.1 Dataset. We use the Amazon product rating data collected
by Mukherjee et al. [30] which contains user-item ratings, along
with review text andmetadata. We extract (user, item, rating) triples
from this data with associated timestamps, and restrict product type
to music, one of the most frequent product types. We identify active
users who rated between 50 and 1000 items. Within music there
are 22 categories, as de�ned by Amazon: rock, jazz, country, etc.
An item is originally associated with 2.12 categories on average,
but we assign it uniquely to one category by selecting the most
frequent category. �e �nal data had 1,719 users, 72,464 items and
197,215 ratings (ratings are between 1 and 5).

7.1.2 Service provider. We used a parallelized implementation
of a collaborative �ltering model based on matrix factorization:
ALS-WR [22, 49]. �is is available in Apache Spark (h�ps://goo.gl/
X33DN9, Accessed 23 Jan 2017), and widely used. �e model has
three parameters – number of latent features f , the regularization
parameter λ, and the number of iterations ni to run. f was set to
22, which is the number of categories in the data. λ and ni were
learnt to be 0.3 and 10 respectively, using grid search on a separate
development set of 60K ratings.

https://goo.gl/X33DN9
https://goo.gl/X33DN9
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Table 2: Recommender results with parameter α for the
model (M) and empirical (E) measures.

α M-Priv-Gain M-Util-Loss E-Priv-Gain E-Util-Loss
(Entropy) (Coh. Loss) (Min. KL-Div.) (MSE)

Original 0.000 0.000 0.000 0.000
0.0 (Coh) 0.826 0.094 0.073 0.501

0.2 1.778 0.086 0.064 0.576
0.4 2.573 0.106 0.075 0.623
0.6 3.339 0.122 0.093 0.664
0.8 4.009 0.133 0.130 0.689

1.0 (Rand) 4.495 0.137 0.262 0.690

7.1.3 Empirical measures.
Privacy Gain. We use the same measure of per-user empirical
privacy as in the search scenario, which is the KL-divergence be-
tween the topical distributions representing the user pro�le and the
“closest” MA pro�le (Eq. 15). �e distributions are computed over
the 22 Amazon Music categories (with add-one Laplace smoothing).
Utility Loss. Empirical utility for user ui is measured in terms of
mean squared error (MSE). MSE is computed for Rtestui , where the
system needs to generate recommendations for each of 40 given
items, for each user ui . �ese test cases are not part of the training
data. �e error is computed between predictions made by the user
model and the model propagated through the MAs, i.e., r̂ (ui ,ok )
and r̂m (ui ,ok ) (Sec. 5.2). We thus have in Eq. 16:

emp−util−loss (ui ) =

∑ |Rtestui |

y=1 ( ˆry (ui ,ok ) − ˆrym (ui ,ok ))
2

|Rtestui |
(16)

�e set of 40 unseen items for a user to make predictions on is
picked at random from the set of 72,464 items. Our complete test
set thus contained 68,760 (= 1,719 × 40) (user, item) pairs.

Under the MA model, each user-item rating prediction requires
multiple MA-item predictions. For the assignment methods pre-
sented, we had to make up to 7.5M predictions in total from the MA
model, for the 68,760 test ratings. However, with the parallelized
Spark implementation, this took only a few minutes on a single
machine with 8 GB RAM.

7.1.4 Assignment methods. We create 1,719 MA pro�les, equal
to the number of users. �e object similarity is set to 1 if two objects
belong to the same user and the same category, and 0 otherwise.
�e tradeo� parameter α was varied from 0.0 through 1.0 in steps
of 0.1. Rating timestamps were used to determine the order of
object assignments.

7.2 Results and insights
Aggregate trends. Table 2 shows how the model and empirical
measures of privacy and utility vary with tradeo� parameter α .
Each value is an average over all 1719 users. α = 0.0 and 1.0 corre-
spond to Coherent and Random assignments respectively. Original
again denotes the baseline where each original user forms her own
account. Note that higher values for the privacy measures of entropy
and KL-divergence indicate be�er privacy gain, and lower values
for the utility measures of coherence loss and MSE imply be�er user
utility loss.

Figure 5: Model measures per user (recommenders).

Figure 6: Empirical measures per user (recommenders).

�e major insight here is the following. For the Coherent as-
signment, we observe good empirical utility (a very low MSE of
0.501), while providing a substantial improvement in empirical pri-
vacy (0.073 from 0). �us, this assignment is a good candidate for
practical deployment. Generally, the Pro�ling-Tradeo� assignment
works well for all α , demonstrating the robustness of our approach.

�e trends in empirical privacy and utility mimic those of the
model measures. As α is increased from 0.0 to 1.0, there is gradual
improvement in empirical privacy and a monotonic degradation in
user utility, both with low gradients.
Results per user. Figs. 5 and 6 visualize privacy versus utility
for model and empirical measures, where each point denotes an
individual user. Di�erent colors represent di�erent tradeo� se�ings,
as shown in the legend. �ere are two notable observations:
• Users form di�erent clusters in the privacy-utility space as α
is varied. �e clusters are so�er (more overlapping) in the em-
pirical case than in the model. �is shows that analytically
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Figure 7: E�ect of pro�le size and diversity (recommenders).

predicting these tradeo� statistics is not easy; hence our experi-
mental approach.

• Fig. 6 indicates that, for the Coherent assignment, a fraction
of users have both high privacy gain and low utility loss (the
brown dots in the lower right area of the chart), while most
users exhibit the expected privacy-utility tradeo�. �is suggests
further optimizations by tuning assignment parameters for each
individual user separately.

E�ect of pro�le size and diversity. As in the search se�ing, we
report on the variation of the empirical measures with respect to
changes in user pro�le size (number of items rated) and diversity
(entropy of the distribution of item categories in the user pro�le)
in Fig. 7. �e two plots on the le� refer to size and the ones on
the right to diversity. �e upper and lower plots correspond to the
Coherent and Random assignments, respectively. We observe:
• Users with diverse interests do well on both dimensions (more

dark dots towards lower right), and thus bene�t the most from
our framework. �is represents a signi�cant fraction of all users,
as seen by the numerous dark dots in the diversity graphs.

• A higher pro�le size yields lower utility loss, for the Coherent
assignment. So while a bigger pro�le typically entails be�er
prediction accuracy (our measure of empirical utility), we can
see that this is true only if related parts of the user pro�le are
preserved in the MAs. �is comes at the cost of somewhat
reduced privacy gains. However, the Coherent assignment does
fairly well in both dimensions. For Random assignment, pro�le
size does not have a notable e�ect on privacy, and utility is
o�en completely lost.

• Overall, users with larger pro�les and varied interests have
the best chance of preserving utility while having substantial
privacy gains under the Coherent assignment. �us, we can
derive guidelines for tuning α (Table 2): α may be kept high in
the beginning for objects of all users, and it may gradually be
decreased when users show diversity in their interests as their
pro�les grow bigger (cf. Sec. 3.5.2).

8 RELATEDWORK
Grouping for privacy: �e idea of masking the traces of individ-
ual users by combining them into groups has been around since the
Crowds proposal by [35]. However, this early work solely focused
on anonymity of web-server requests. [31] devised an abstract
framework for group privacy over obfuscated databases, but did
not address utility. For search engines speci�cally, [21] proposed a
notion of query bundles as an implicit grouping of users, but focused
on countering de-anonymization in the presence of so-called van-
ity queries. �e short paper [50] sketches a preliminary approach
where semantically similar queries by di�erent users are grouped
for enhancing privacy. Aggregation of users’ website-speci�c pri-
vacy preferences through a centralized server [47], can also be
perceived as a type of privacy through solidarity. �e principle of
solidarity has moreover been explored through a game-theoretic
framework over recommender systems [18].

Tracking and pro�ling: A good body of work investigates
to what extent and how users are tracked by third parties in web
browsers [24, 29, 47], or throughmobile apps [28]. �ese are primar-
ily empirical studies with an emphasis on identifying the tracking
mechanisms. �e interactions with service providers, where users
log in and leave extensive traces, have been largely disregarded. In
contrast, our framework helps counter both tracking and individual
pro�ling by detaching users from online accounts.

To reduce the scale of pro�ling, a model called stochastic privacy
has been proposed to selectively sample user pro�les for use by
personalizing algorithms [39]. To counter pro�ling by search en-
gines in particular, [45] has proposed to issue queries anonymously,
but provide the engine with a coarse topical pro�le for answer
quality. On the tracking front, the Non-Tracking Web Analytics
system reconciles users’ need of privacy and online providers’ need
of accurate analytics [3]. Although these various works address the
privacy-utility trade-o�, no explicit control mechanism has been
proposed for user utility.

Privacy-preserving IR: �e intersection of privacy and IR has
received some a�ention in the past years [46]. One of the key
problems studied in the �eld is that of post-hoc log sanitization
for data publishing [9, 16, 48]. Online sanitization, on the other
hand, aims at proactively perturbing and blurring user pro�les.
Techniques along these lines typically include query broadening
or dummy query generation (e.g., [4, 33, 37, 43]). It has also been
proposed to perturb user pro�les by making users swap queries and
execute them on behalf of each other [34]. Very few of these prior
works consider the adverse impact that obfuscation has on utility,
and the usual focus is on the utility of single query results. To the
best of our knowledge, none of them focuses on personalization
utility or o�ers quantitative measures for the trade-o�.

Another privacy concept studied in IR is that of exposure. Re-
cently, the notions of R-Susceptibility and topical sensitivity have
been proposed to quantify user exposure in sensitive contexts
within a given community [6].

Privacy-preserving data mining: �ere is a vast body of lit-
erature on preserving privacy in mining data for rules and pa�erns
and learning classi�ers and clusteringmodels [2, 12]. In this context,
utility is measured from the provider’s perspective, typically an
error measure of the mining task at hand (e.g., classi�cation error)
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[5]. In the speci�c context of recommender systems, rating predic-
tion accuracy [27, 32] and category aggregates [38] are typically
used as proxies for utility. Techniques for user pro�le perturbation
have also been studied for utility-preserving di�erentially-private
recommeders [17].

9 CONCLUSIONS
We presented Mediator Accounts (MAs): a framework to counter
user pro�ling while preserving individual user utility as much as
possible. �e framework enables decoupling users from accounts,
making direct targeting impossible, and pro�le reconstruction or de-
anonymization much harder. At the same time, users are still able to
bene�t from personalization by service providers. �e versatility of
the framework has been demonstrated in two di�erent application
scenarios. While our model allows for �exible trade-o�s between
privacy and utility, a key question in our two empirical studies has
been to understand how well the MAs can preserve the utility in
terms of high-quality search results and recommendations. �e
experiments show that the split-merge approach with Coherent
assignment improves the privacy, while incurring li�le user utility
loss. �ese bene�ts are most pronounced for users with larger
pro�les (i.e., more activity) and higher diversity of interests.

Open issues for future work include practical deployment, han-
dling of other personalization features, and exploring the options
for tuning assignments and framework parameters to the speci�c
needs of individual users. On top of that, analyzing the three-
dimensional trade-o� between user privacy, user utility and the
traditional service provider utility could help ensure that the result-
ing mediator pro�les are a useful source for user analytics, making
an MA proxy a tolerable component of the online landscape.

Finally, we would hope that the MA proposal stirs up the inves-
tigation of how the need-to-know principle could be implemented
in case of personalized online services.
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[16] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke. Publishing search
logs: A comparative study of privacy guarantees. TKDE ’14.

[17] R. Guerraoui, A.-M. Kermarrec, R. Patra, and M. Taziki. D2P: distance-based
di�erential privacy in recommenders. VLDB ’15.

[18] M. Halkidi and I. Koutsopoulos. A game theoretic framework for data privacy
preservation in recommender systems. In ECML PKDD’11.

[19] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D. Lazer, A. Mis-
love, and C. Wilson. Measuring personalization of web search. In WWW ’13.

[20] X. He, A. Machanavajjhala, and B. Ding. Blow�sh privacy: Tuning privacy-utility
trade-o�s using policies. In SIGMOD ’14.

[21] R. Jones, R. Kumar, B. Pang, and A. Tomkins. Vanity fair: Privacy in querylog
bundles. In CIKM ’08.

[22] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. IEEE Computer ’09.

[23] A. Krause and E. Horvitz. A utility-theoretic approach to privacy in online
services. JAIR ’10.

[24] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. Internet jones and the raiders
of the lost trackers: An archaeological study of web tracking from 1996 to 2016.
In USENIX Security ’16.

[25] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. ICDE ’07.

[26] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. TKDD ’07.

[27] F. McSherry and I. Mironov. Di�erentially private recommender systems: Build-
ing privacy into the Net�ix prize contenders. In KDD ’09.

[28] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee. �e Price of Free: Privacy
Leakage in Personalized Mobile In-App Ads. In NDSS ’16.

[29] W. Meng, B. Lee, X. Xing, and W. Lee. TrackMeOrNot: Enabling Flexible Control
on Web Tracking. InWWW ’16.

[30] A. Mukherjee, B. Liu, and N. Glance. Spo�ing fake reviewer groups in consumer
reviews. InWWW ’12.

[31] A. Narayanan and V. Shmatikov. Obfuscated databases and group privacy. In
CCS ’05.

[32] V. Nikolaenko, S. Ioannidis, U.Weinsberg, M. Joye, N. Ta�, and D. Boneh. Privacy-
preserving matrix factorization. In CCS ’13.

[33] S. T. Peddinti and N. Saxena. Web search query privacy: Evaluating query
obfuscation and anonymizing networks. JCS ’14.

[34] D. Rebollo-Monedero, J. Forne, and J. Domingo-Ferrer. �ery pro�le obfuscation
by means of optimal query exchange between users. TDSC ’12.

[35] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web transactions. TISSEC
’98.

[36] N. Santos, A. Mislove, M. Dischinger, and K. Gummadi. Anonymity in the
personalized web. In NSDI Posters ’08, 2008.

[37] X. Shen, B. Tan, and C. Zhai. Privacy protection in personalized search. In SIGIR
Forum ’07.

[38] Y. Shen and H. Jin. Epicrec: Towards practical di�erentially private framework
for personalized recommendation. In CCS ’16.

[39] A. Singla, E. Horvitz, E. Kamar, and R. White. Stochastic privacy. In AAAI ’14.
[40] T. Strohman, D. Metzler, H. Turtle, and W. B. Cro�. Indri: A language model-

based search engine for complex queries. In International Conference on Intelligent
Analysis ’05.

[41] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems ’02.

[42] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated
analysis of interests and activities. In SIGIR ’05.

[43] P. Wang and C. V. Ravishankar. On masking topical intent in keyword search.
In ICDE ’14.

[44] Y. Xu, K. Wang, G. Yang, and A. W. Fu. Online anonymity for personalized web
services. In CIKM ’09.

[45] Y. Xu, K. Wang, B. Zhang, and Z. Chen. Privacy-enhancing personalized web
search. InWWW ’07.

[46] H. Yang, I. Soboro�, L. Xiong, C. L. Clarke, and S. L. Gar�nkel. Privacy-Preserving
IR 2016: Di�erential Privacy, Search, and Social Media. In SIGIR ’16.

[47] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol. Tracking the trackers. In WWW ’16.
[48] S. Zhang, G. H. Yang, and L. Singh. Anonymizing query logs by di�erential

privacy. In SIGIR’16.
[49] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative

�ltering for the Net�ix prize. In AAIM ’08.
[50] Y. Zhu, L. Xiong, and C. Verdery. Anonymizing user pro�les for personalized

web search. In WWW ’10.


	Abstract
	1 Introduction
	2 Framework Overview
	2.1 Architecture
	2.2 Incentives of participating parties
	2.3 Trusted and adversarial parties

	3 Assignment Model
	3.1 Concepts and notation
	3.2 Objective
	3.3 Measuring privacy gain
	3.4 Measuring user utility loss
	3.5 Assignment algorithms

	4 MA in Search Systems
	4.1 Framework elements
	4.2 Service provider model

	5 MA in Recommender Systems
	5.1 Framework elements
	5.2 Service provider model

	6 Experiments on Search
	6.1 Experimental setup
	6.2 Results and insights

	7 Experiments on Recommenders
	7.1 Experimental setup
	7.2 Results and insights

	8 Related Work
	9 Conclusions
	References

