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ABSTRACT
Online platforms mediate access to opportunity: relevance-based
rankings create and constrain options by allocating exposure to job
openings and job candidates in hiring platforms, or sellers in a mar-
ketplace. In order to do so responsibly, these socially consequential
systems employ various fairness measures and interventions, many
ofwhich seek toallocate exposurebasedonworthiness. Because these
constructs are typically not directly observable, platforms must in-
stead resort to using proxy scores such as relevance and infer them
from behavioral signals such as searcher clicks. Yet, it remains an
open questionwhether relevance fulfills its role as such aworthiness
score in high-stakes fair rankings.
In this paper, we combine perspectives and tools from the social

sciences, information retrieval, and fairness in machine learning to
derive a set of desired criteria that relevance scores should satisfy
in order to meaningfully guide fairness interventions. We then em-
pirically show that not all of these criteria are met in a case study of
relevance inferred from biased user click data. We assess the impact
of these violations on the estimated system fairness and analyze
whether existing fairness interventions may mitigate the identified
issues. Our analyses and results surface the pressing need for new
approaches to relevance collection and generation that are suitable
for use in fair ranking.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; •
Human-centered computing→ ranking, fairness.
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1 INTRODUCTION
Search systems generate rankings that do the sorting and provi-
sion of candidates to hire, of jobs to apply to, of housing options
and of commercial products or services. As these rankings mediate
access to opportunity [10, 61], various fairness measures and inter-
ventions haven been proposed to prevent harmful outcomes, such
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as systematic penalization of marginalized groups or new entrants
to online marketplaces [8, 15, 28, 29, 48, 69, 77]. Such treatments
characterize rankings as a causal intervention on the allocation of
exposure of ranked items to searchers [38, 57] and direct mediators
of fairness [10, 61], in line with social and legal perspectives on
fairness-related harms [69, 77].

Many existing fairness definitions propose to explicitly distribute
exposure in rankings as a function ofworthiness or deservedness, e.g.,
how qualified for a job a candidate is [10, 13, 17, 24, 38, 47, 61]. In
the fair ranking literature to date, however, the concept of deserved-
ness has remained underdefined and has instead been represented
by relevance: Fairness definitions, such as equity of attention [10]
or fairness of exposure [61], mandate that item exposure alloca-
tions in a ranking be proportional to the item’s relevance to the
ranking query. In socially consequential search systems, relevance
thus now plays a doubly important role in the distribution of the key
livelihood-impacting resources – inequitable estimationof relevance
then becomes inequitably allocated exposure. Yet, the construct of
relevance in information retrieval has originally been developed to
guide ordering of items to create results of high utility to searchers.
Whether the score can be repurposed as a notion of worthiness in fair
rankings remains an open question that we focus on in this paper.
We unite perspectives on measurement theory from the social

sciences [34], information retrieval, and fairness inmachine learning
to critically examine the role of relevance in equitable information
access. We begin with a conceptual analysis of relevance, examining
it from historical and definitional angles, and probing whether it
can reasonably guide fairness interventions as a proxy for worthi-
ness. The analysis allows us to derive desiderata for relevance in
fair rankings: a set of conditions (credibility, consistency, stability,
comparability, and availability) the scores should satisfy in order to
be a reliable component of exposure-based fairness measures.
We then empirically test whether the derived criteria are met in

practice in a case study of relevance inferred from biased user click
data. We approach these questions as questions of long-term dy-
namics in a complex system that combines algorithmic and human
agents; as such we conduct a simulation study with both synthetic
and real world datasets, similar to past efforts [11, 20, 25].
Click-based approaches, measuring relevance via user browsing

models (i.e., conditional probabilities of relevance given a model of
user clicking behavior [22, 68]), are indeed a common way to gather
relevance at scale as it is not readily available otherwise. Models of
click behavior have been shown in prior work to sometimes poorly
represent searcher behavior, reflect biases, or capture only narrow
conceptions of relevance. Our results furthermore show that they
can violate some of the desiderata of relevance for fair ranking. In
particular, click-based relevance scores violate the criteria of avail-
ability and comparability – as the feedback is collected only for the
top-ranked items [22], accurate may not be available for most items
in the corpus, and the resulting scoresmaynot allow for accurate pro-
portional relevance comparisons between individuals and groups.
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This paper makes the following contributions: (1) We probe the
role of relevance as a proxy forworthiness in fair exposure allocation,
and derive a set of five desired criteria for relevance to be a valid
and reliable proxy. (2) We consider click-based relevance rankings
as a case-study and observe that some desired criteria may not be
met in practice. (3) We explore factors such as class imbalance or
fairness interventions that may mitigate the impact of desiderata
being unmet in practice, and find that impact can vary from dataset
to dataset. In summary, our analyses and results demonstrate that
relevanceneeds to be critically examined as a valid and reliable target
for fair exposure allocation. The results also surface the pressing
need for new approaches to relevance collection and generation (e.g.,
inference of relevance as calibrated probabilities), while providing
a set of criteria for viable solutions.

2 FAIR RANKING: THEROLEOF RELEVANCE
The probability ranking principle [54] states that an optimal ranking
sorts items in order of relevance–where relevance is assumed to be
unbiased and consistent. Yet, despite this ‘optimal’ ranking of items,
the outcomes may be unfair to different groups of users [10, 13, 14,
17, 24, 47, 61, 71, 75]. For instance, wemay observe an unfair ranking
when top search results for a recruiter feature primarily male can-
didates, despite the presence of qualified female candidates in the
selection pool. Many papers have proposedmethods to quantify and
mitigate unfairness by allocating ranking exposure in proportion to
“worthiness" of allocation [10, 13, 17, 24, 47, 61, 75]. Yet, the concept
ofworthiness remainsundefinedandoften the relevanceof an item is
usedas aproxy [10, 53, 61]. In this section,weexamine the role of rele-
vance in fair ranking andprobe its validity as a proxy forworthiness.

2.1 Goals of Fair Exposure Allocation
All ranking systems andoperationalizations of fairness express anor-
mative goal. In fair ranking, different interpretations of fairness thus
build fromdiffering normative theories of discrimination underlying
each framework [7]. For example, for a goal of equal opportunity,
under the view that similar items should attain equal attention, one
might allocate exposure in proportion to the notion of an item’s
attention-deservedness or “worthiness" at ranking time. Alterna-
tively, the objective of demographic parity would be to have all
groups realize their potential equally well; in implementation, this
could be achieved by equalizing the levels of exposure per group.
The ideal exposure rates for itemsmay also be externally determined
based on domain knowledge or through legal regulations: This in-
cludes, for example, the Rooney Rule [18]. We direct the interested
reader to recent work by Zehlike et al. [76] which delineates the
normative dimensions underlying several fair ranking techniques.
In many fairness metrics, the relevance of a ranked item in re-

sponse to a query is considered to be a proxy for its worthiness,
and the attention an item receives from searchers should ideally be
proportional to its relevance [10, 53, 61].

2.2 Measuring andMitigating (Un)Fairness
2.2.1 Measuring Fairness. In this paper, we focus on the family of
exposure-based or attention-based metrics that allocate exposure
in proportion to relevance [10, 13, 17, 24, 47, 61, 75].
The exposure obtained by group𝐺𝑘 under ranking P is defined

as the mean exposure obtained by all items in𝐺𝑘 :

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺𝑘 ⋃︀𝑃)=
1
⋃︀⋃︀𝐺𝑘 ⋃︀⋃︀

∑

𝑑𝑖∈𝐺𝑘

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑑𝑖 ⋃︀𝑃) (1)

Similarly, relevance of group𝐺𝑘 is defined as the mean inferred
relevance of all items in it:

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝐺𝑘)=
1
⋃︀⋃︀𝐺𝑘 ⋃︀⋃︀

∑

𝑑𝑖∈𝐺𝑘

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑑𝑖 ⋃︀𝑃) (2)

Sincewe consider the case of a binary protected attribute in our ex-
periments, for simplicity all themetrics have been defined using two
groups (but could be extended). Three commonly-used metrics are:

Demographic fairness parity. Ratio between exposure of groups,
agnostic to base rates of relevance [47]), measuring howmuch the
exposure allocated to different groups varies:

⋁︀
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺0⋃︀𝑃)

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺1⋃︀𝑃)
⋁︀ (3)

Exposure fairness: Ratio between exposure-relevance ratios of
groups measuring how much more exposure each group receives
proportional to its relevance [47]:

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺0⋃︀𝑃)

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝐺0⋃︀𝑃)
⇑
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺1⋃︀𝑃)

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝐺1⋃︀𝑃)
(4)

Individual fairness: Sum of absolute difference in the exposure
and relevance scores for individual items, amortized over a sequence
of rankings (︀1,𝑀⌋︀, with 𝑁 items [10].

𝑁

∑

𝑖=1
⋃︀

𝑀

∑

𝑗=1
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑑𝑖 ⋃︀ 𝑗)−

𝑀

∑

𝑗=1
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑑𝑖 ⋃︀ 𝑗)⋃︀ (5)

To estimate exposure for different positions, a weight denoting
the attention a ranking position obtains from searchers on average is
required. We use a log-decaying attention model for top-k positions,
similar to the discounts in NDCG [32]. All relevance and exposure
scores are (︀0,1⌋︀-normalized following Biega et al. [10]. While we
focus on the metrics listed above in our paper, we highlight that
additional exposure-based fairness metrics have been proposed in
recent literature, and direct the interested reader to work by Raj and
Ekstrand [53] for a comparitive analysis.

2.2.2 Fairness Interventions. Several methods have been proposed
to train ranking systems that maximize fairness according to the
metrics described above. These approaches are performed during
pre-processing [4, 63] (e.g., Sonoda [63] consider the order of the
training data), as in-processing [47, 72] (with a fairness constraint
while training a learning to rank system), or as post-processing [10,
31, 43, 61] (re-ranking items so that system fairness is high). Notably,
the expected relevance scores in the above fairness formulationsmay
not be known a priori, and in practice onewouldworkwith estimates
fromsomepredictivemodel. In particular, in the systemsweconsider,
these scores may be obtained from the ranking model itself.

2.3 Probing Relevance as a Proxy forWorthiness
2.3.1 DefiningWorthiness. Fairness interventions seek to produce
rankings that are more equitable, i.e., rankings that are capturing
something not totally captured by inferred relevance. Several recent
papers explicitly or implicitly refer to various notions of “merit” or
“worthiness” as a basis for their intervention:
● “allocation of exposure based on merit (i.e, relevance)” [70],
● “We define the merit of a document as a function of its relevance
to the query [...] andwe state that each document in the candidate
set should get exposure proportional to its merit” [62],
● “relevance can be thought of as a proxy for worthiness in the
context of a given search task” [10],
● “to implement fairness constraints based on merit, we need to
explicitly estimate relevance to theuser as ameasure ofmerit” [47].
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In this paper, we refer toworthiness as the underlying construct that
fair rankings aim to infer and operationalize within their (possibly
adjusted) relevance scores. Yet, in practice, this construct eludes
an easy defintion. Zehlike et al. [76] note that among fairness met-
rics, some consider a notion of merit when measuring disparities
in exposure while mostly understanding “merit as the utility score
𝑌 at face value. However, ...the understanding of merit depends on
worldviews and on one’s conception of equal opportunity.”

Under one interpretation, the worthiness of an item, such as a job
seeker’s profile on an online hiring platform, can be understood as
the value from allocating attention to the item. Yet, a key question
remains: the value for whom? Job seekers might receive value from
being allocated attention to searchers likely to hire them. Searchers,
on the other hand, might receive value from being exposed to job
seekers who are qualified and likely to stay with the employer long-
term.Worthiness scores based on the value for different stakeholders
might thus diverge.

Another interpretation of worthiness, rather than tying the score
to the allocation value, might look at inherent deservedness of the
ranked items in a given application domain. The difference between
these two interpretations is akin to the difference between outcome
and process fairness; see, e.g., the discussion by Barocas et al. [7] on
merit vs. desert for allocation.
Having laid out some of the definitional nuances of worthiness,

the remainder of this section will focus on our paper’s key question:
Is relevance an adequate and sufficient proxy for worthiness?

2.3.2 A Definitional Perspective on Relevance. Relevance is a con-
struct central to all search systems. However, it is important to note
that a single definition might not apply to all scenarios. While the
concept of relevance has been examined in detail before as a con-
struct that guides information seeking behaviors [12, 40], several
valid definitions exist, including as a user-dependent andmeasurable
construct of informationneed, utility or usefulness of the viewed and
assessed information object, topicality, and others [12, 56]. Accord-
ingly, different definitions of relevance have been instrumented by
information systems over time [56]. For example, in search systems,
relevance may refer to the topical match between a query and a
web-page [73] or binary “appropriateness" scores [41], both often
crowd-sourced and averaged [6].
In an ideal system, item ranking order should correspond to the

latent relevance and satisfy a users’s information need [56]. Needless
to say, a single-dimentional notion of relevance used during system
trainingmightnot satisfy all specificationsanduserneeds.Relevance
is a convoluted relation involving a given user’s information need
and the properties of ranked items – objective scores of relevance
maynot exist, and insteadareonlydefinedwithin the context of apar-
ticular stakeholder’s frame of reference [56]. Despite this complexity,
relevance is often infferred using common click measurement models
that make simplifying definitional assumptions about relevance.

2.3.3 Measuring Relevance: FromDefinitions to Practice. Constructs
such as relevance cannot be operationalized directly and are instead
inferred frommeasurements of observable properties thought to be
related to them via a measurement model [34]. Behaviorist search
systems operationalize relevance as user engagement with ranked
content, implicitly assuming that the more (latently) relevant the
content is, the higher the engagement. Thus a common strategy is to
estimate relevance of an item to a given query using behavioral data
in the form of clicks. Clicks are translated to relevance through a

user browsingmodel. Suchmodels typically also account for various
measurement issues, such as interaction and cognitive biases of the
searchers, or the physical limitations of a ranking infrastructure.
Another approach to measurement of relevance is crowdsourc-

ing. Here, “ground-truth” relevance judgments [56] are collected
from human annotators for a list of items given a query. Because
of how complex the concept of relevance is, it is however hard for
external annotators to estimate another searcher’s relevance [5].
Moreover, the annotation process is costly and impossible to reliably
scale. Indeed, relevance judgments elicited from annotators are used
primarily for system evaluation, not training [65].

There are several assumptions that have been traditionally made
in relevance measurements (summarized from Saracevic [56]): that
relevance is binary (ranked items can be relevant or not relevant),
that relevance judgments of different items are independent, that
relevance has a non-dynamic nature (i.e., values do not change over
time), that relevance judgments exhibit low variance across users in
non-personalized systems, and others. In operationalizing relevance,
from the theoretical understanding to the model underlying data
collection, it is crucial to note that several of these assumptions—for
example, the binary nature of relevance—are still prevalent.

2.3.4 Issues with Relevance as aWorthiness Score. We hypothesize
that using relevance scores as aproxy forworthiness to fairly allocate
exposure has thus far been a choice of convenience. We base this
claim on the fact that the construct of relevance has primarily been in-
vestigated in the context of accurate ranking construction [12, 40, 49, 56],
not as a worthiness score to guide fair exposure allocations.
Additionally, limitations of relevance scores [23] (such as un-

availability for all ranking subjects or thebinary nature of elicited
judgments), of theirmeasurement process (such asmisspecifications
in browsing model parameters [39]), and the consequences thereof,
have also primarily been studied in the context of ranking utility.
In the context of fairness, to address the unavailability of relevance
scores, Kırnap et al. [42] proposed a methodology to estimate fair-
ness metrics using incomplete relevance judgments. However, these
approximations are useful for system evaluation, not for training
algorithms that fairly allocate exposure. Similarly, fair ranking evalu-
ation benchmarks rely on exhaustive annotations that are infeasible
at the scale of real systems [9].

In addition to the incompleteness issues, using relevance as a proxy
for worthiness involves making certain implicit assumptions about
their relationship: for example, that the relative ordering of items
according toworthiness is consistent with the ordering by relevance.
Moreover, high variance or noisiness in relevance scores may also
cause fairness measurements to be less robust ormore arbitrary [19].
It is essential to elucidate and test the assumptions of how the two
concepts relate to each other if relevance is to be a valid and reliable
candidate for approximating worthiness.

Attending to the two-sided nature of search systems helps us fur-
ther understand the way that values and positionality are embedded
in relevance: Relevance defined as utility to the searcher/consumer
and relevance defined as utility to the items/providers can be in
conflict in fair ranking systems [47, 61]. Moreover, search systems
themselves may have additional goals as well, such as maximizing
the time users spend on the platform. It is thus crucial to surface
whose judgment of worthiness a given relevance proxy represents.

Table 1 summarizes several common relevance measurement ap-
proaches and explores their potential issues as proxies of worthiness.
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Worthiness Proxy Positionality of Value Potential Issues with Measurement

Crowd-sourced labels [6, 23, 41] Depends on labeling instruction and perspective of labelers May be unavailable for many items, or binary valued
Topical match between query and item [73] Depends on attributes used May be noisy, depends on similarity metric

ML-based predicted relevance [47] Searcher, if inferred using interaction data Potentially noisy, may not generalize to new queries
Click-based relevance [1, 39] Searcher Binary-valued, prone to biases, may depend on size of click logs

Table 1: Potential limitations with using relevance scores as proxies for worthiness. Here, the “positionality of value" denotes the
position fromwhich ideal “worthiness" is judged (i.e., whose value from the ranking is considered; see Section 2.3.1 for details).

3 CASE STUDY: RELEVANCE FROMCLICKS
In this paper, we focus on relevance inferred from clicks as a case
study. An overview of the inference process shown in Figure 1.1

3.1 Ranking with Click-Based Relevance
Unbiased learning-to-rank is a well studied problem in information
retrieval to learn accurate rankings from biased training data [1, 33,
39, 64, 67, 68]. Some are online ranking algorithms that involve in-
terventions and collecting real-time user feedback [50, 59, 74]. Many
of these systems also rely on a counterfactual model of estimations
to debias the ranking loss. One common approach is to use Inverse
PropensityWeighting or Score (IPS) [39] to account for various user
cognitive biases in standard ranking losses, such as position bias [68],
trust bias [1], or selectionbias [46].Otherworkproposes jointly train-
ing a ranking model and an examination propensity model [3, 33].
Here we introduce a prototypical learning-to-rank framework

with click-based relevance, including the learning algorithms, infer-
ence methods, and evaluation metrics.

User
Browsing  

Model

Infers relevance  
from clicks Supervises

Generates

Examines (E) &  
     Clicks (C)

Relevance: R

Evaluate ranking quality and fairness 

Allocates  
Exposure

Ranking 
Model

γe

E R

C

βr

Inferred 
Relevance (R’)

Proxy for Worthiness

Figure 1: Relevance inferred using searcher clicks. A searcher
inputs a query, with a latent notion of relevance (𝑅) of results.
Then, they examine (𝐸) and click (𝐶) on the ranked results,
thereby allocating exposure to the items. However, theymay
exhibit cognitive biases (such as examining and clicking on
top-ranked itemswith higher probability). In order to infer
relevance of items from these click logs, the data has to be
debiased. Browsingmodels perform this operation byparame-
terizing the examination probability and relevance of ranked
items, and then defining amodel linking the click probability
with these for a query and item. With such a model, the
probability of an item being relevant can be estimated or
relevance can be inferred. Then, to predict the relevance for
an unseen query/item, amachine learningmodel is trained,
with loss terms influenced by parameters from the browsing
model (e.g., with propensity-weighting). Finally, the quality
and fairness of exposure allocation ismeasured.
1Code: https://github.com/Aparna-B/FairRankingRelevance

3.1.1 FromClicks to Relevance via BrowsingModels. Click or brows-
ing models – derived using empirical studies of user information
retrieval/search behavior – make it possible to simulate ranking sys-
tems, approximate item relevance, and evaluate search systems [16].
The relevant-intent hypothesis states that an item is clicked if and
only if it is relevant and examined, which is then used to infer the
latent relevance using algorithms such as Inverse Propensity Scores.
The main variables being modelled with different assumptions in
click or user browsing models is the probability of examination of
items in a ranked list: 𝑜𝑟@rank 𝑟 is a binary variable indicating
whether an item at position-𝑟 is examined or not, and the relevance
of items being ranked. Most browsing models parameterize the ex-
amination probability with known distributions identified using
domain knowledge. When the browsing model changes, the prob-
ability of examination at a specific rank 𝑝(𝑜𝑟 =1), and the model for
user behaviour changes. As a high-level summary, a browsingmodel
is a graphical model with two unseen nodes – examination and rel-
evance – and an observable node of clicks. (For a comprehensive
overview of click models, see [16].)

In this paper, we use a position-biased browsing model of user be-
havior. This model assumes that examination probability is constant
given a specific rank 𝑟 . (We also note that browsing models are also
used in other applications, such as debiasing user logs.)

3.1.2 Unbiased Learning to Rank with Propensity-Weighting. The
Propensity-Weighted ranking algorithm infers propensity weights
to minimize a specific, pre-defined loss function 𝑙(𝑓 ) and supervise
a rankingmodel 𝑓 . Inmost ranking systems, the expected loss can be
expressed as a sum of loss terms over relevant items in a list (or a pair
of items). The ranking algorithm proposed by Joachims et al. [39]
uses Inverse Propensity Score (IPS) weighting to account for the bi-
ased nature of clicks (e.g., position bias as described in Section 3.1.1),
andweight each items’s loss correspondingly. In IPSweighting, each
item’s loss is inversely weighted with its examination probability
if it is clicked. Note that only items that are clicked contribute to this
IPS-weighted loss. In the next section, we describe how the ranking
model 𝑓 is trained and optimized.

3.1.3 LearningaRankingModel. This is themachine learningmodel
𝑓 that predicts relevance used to produce a ranking. We consider
models optimized with a propensity-weighted listwise loss using
the outputs of deep neural networkmodels, following Joachims et al.
[39].We optimize a list-wise softmax-based cross-entropy losswhile
training the ranking model [2, 3]. This loss is further weighted by
propensity and optimized during model training, with best parame-
ters chosen based on validation set performance. In the next section,
we list evaluationmetrics for assessing the utility of ranking systems.

3.1.4 Performance Evaluation. Finally, the quality of the ranking al-
gorithm is evaluated. Typically, the ranking produced by themodel is
compared against a ground truth ranking (assumed to be anunbiased
gold standard). In this paperwe focus on the Normalized Discounted

https://github.com/Aparna-B/FairRankingRelevance


The Role of Relevance in Fair Ranking SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Cumulative Gain (NDCG), a normalized measure of ranking qual-
ity favoring occurrence of more relevant documents in the higher
ranking positions through a logarithmic discount [35].

4 DESIDERATA
OFRELEVANCE IN FAIR RANKING

In this section, we describe a set of desiderata that the relevance
scores ought to satisfy to be meaningful and useful for fairly allocat-
ing exposure. Drawing on domain knowledge about relevance-based
ranking systems and the assumptions within, these desiderata offer
a pathway towards valid and reliablemeasures of relevance, where
the properties of proxy scores should match their theoretical ideal
across a range of qualitative dimensions [34].

In the definitions below, let𝑤 denote true relevance (worthiness)
scores, and 𝑟 denote inferred relevance scores, i.e., themeasurements
of𝑤 that will be used to allocate exposure. 𝐾 denotes the number
of items to be ranked.
Credibility. For inferred relevance scores to be useful, they must

behave as we expect. In a ranking setup, we can ask: do items with
high true relevance (worthiness) have higher inferred relevance
scores across runs? (And lower, lower?) Absence of credibilitywould
imply that the inferred relevance scores are not capturing how the
‘true’ relevance scores would be expected to, and so lacks face valid-
ity and content validity—andmay even lack reliability across similar
inputs to themodel [34]. Thus, it might be an unsuitable proxy under
views of fairness such as “equal opportunity"where exposure should
ideally be allocated in proportion to worthiness.

Definition 4.1 (Credibility). If 𝑖 and 𝑗 are two items to be ranked,
credibility necessitates, in expectation:

𝑤𝑖 ≥𝑤 𝑗 ≡𝑟𝑖 ≥𝑟 𝑗 (6)

Consistency. A core assumption in unbiased learning-to-rank is
that of consistency: in the limit of sufficient data, the estimated
expected relevance scores converge. Thus, meeting this statistical
property necessitates the criterion: do the inferred relevance scores
converge? If this criterion remains unmet, then fair ranking metrics
relying on relevance may not converge either.

Definition 4.2 (Consistency). In the limit of sufficient data, the
predicted scores converge within an acceptable error range. Let 𝑁
denote the number of expected training steps (e.g., the size of the
training set), and 𝑟𝑖 the predicted relevance score for item 𝑖 at the
𝑁 th training step. If 𝑆𝑛 = 1

𝐾 ∑
𝐾
𝑖=1(︀(𝑟

𝑛
𝑖 − 𝑟𝑖)

2
⌋︀ measures the mean

squared deviation between relevance scores obtained by training
the relevance prediction model for 𝑛 steps and {𝑟𝑖}𝐾𝑖=1, and 𝜖 is the
acceptable error value (close to 0), then consistency requires:

∃𝑁0 such that 𝑆𝑛 ≤𝜖∀𝑛≥𝑁0 (7)

Stability. Relevance ought to have test-retest reliability, i.e., that
measurements from the same model for the same input do not vary
more than an expected limit (e.g., due to unavoidable stochasticity).
In the ranking setup, the criterion to test then is: do the inferred
relevance scores varymore than an established limit across runswith
minor variations in stochastic parameters or initialization? This is
related to robustness and how noisy estimates of fairness would be.

Definition 4.3 (Stability). If 𝑛 denotes the number of experimen-
tal runs with variations in unimportant parameters, and 𝜖 is the

acceptable variation across runs, then:

1
𝐾

𝐾

∑

𝑗=1
(︀
1
𝑛

𝑛

∑

𝑖=1
(︀(𝑟𝑖 𝑗 −` 𝑗)

2
⌋︀⌋︀≤𝜖 (8)

where ` 𝑗 = 1
𝑛 ∑

𝑛
𝑖=1 𝑟𝑖 𝑗 , and 𝑟𝑖 𝑗 denotes relevance for the 𝑗th item

under the 𝑖th run.

Comparability. Several fairness interventions suggest that expo-
sure should be allocated in proportion to inferred relevance [10, 61],
with the underlying assumption that this proportionalitywould hold
for true relevance (worthiness) of items/groups. Thuswemust verify
that the relative ratios of relevance scores match the corresponding
ratios of true worthiness, i.e., that ourmodel has structural validity—
that these relative properties behave as expected [34]. For group
fairness, the average relevance is taken as the aggregate across all
items belonging to a group. For individual fairness, this criterion is
evaluated at the per-item level.
Definition 4.4 (Comparability). If 𝑖 and 𝑗 are two items or groups of
items (e.g., defined on the basis of a sensitive attribute) to be ranked,
comparability necessitates:

𝑤𝑖

𝑤 𝑗
≈𝑡 ≡

𝑟𝑖

𝑟 𝑗
≈𝑡 (9)

Availability. Past research in Information Retrieval (IR) has estab-
lished that searchers exhibit position-bias in viewing and inspecting
ranked results [22]. As a result, this variance in attention across
different positions is modeled while allocating exposure for an item
or group of ranked items. Then, exposure is allocated in proportion
to uncorrected (i.e., without any bias-correction) relevance scores.
Thus, anunderlying assumption is that relevance scores are available
for all items, and are unbiased estimates of true relevance (or worthi-
ness). The availability criterion tests this assumption that unbiased
inferred relevance scores are available for all items—without which
it would be difficult to claim validity or reliability of relevance scores.

Definition 4.5 (Availability). If 𝑓 is a function that outputs 1 if 𝑓 (𝑥)
is defined and 0 if not, then,

𝑓 (𝑟𝑖)=1∀𝑖 ∈{1,2...𝐾} (10)

Additionally, we define that for the availability property to bemet,
the distribution of 𝑤 across items should be statistically indistin-
guishable from that of 𝑟 .

Note that some of these properties are inter-related. For example,
availability may be a necessary condition for comparability to be
tested. Thus, it may be possible to design a fixed order inwhich these
properties could be tested.

5 EXPERIMENTAL SETUP
We describe the setup for testing if desiderata described in Section 4
are met in practice when relevance is inferred using searcher clicks.

5.1 Data
Datasets in our experiments consist of a list of items which are to
be ranked in response to a query. Each item is associated with some
features and a relevance label. We assume that the ranking with
highest-utility is one where items are arranged in decreasing order
of these ground-truth relevance labels. Items also have labels denot-
ing (protected) group membership. We split each dataset in 70-10-20
proportions as train, validation, and test splits. The details of each
dataset are below and summarized in Table 2.
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Dataset 𝑑 Relevance Distribution, % (4=highest)
0 1 2 3 4

synth-normal 2 0.13 11.00 61.51 26.65 0.71
synth-pareto 2 86.78 11.39 1.58 0.21 0.04

fairtrec 3 50.00 50.00 - - -

Table 2: Datasets statistics. 𝑑 denotes the number of features.
Each column 𝑖 indicates the relative frequency of relevance
grade 𝑖 in a given dataset (4: most relevant, 0: least relevant).
Each dataset contains 50000 samples

.

5.1.1 Synthetic Data. To experiment under controlled conditions,
we synthesize two datasets from a graphical model using the syn-
thetic data generation methodology proposed by Yang et al. [71]. In
each case, the correlation Directed Acyclic Graph (DAG) consists
of four attributes: continuous attributes for 2 features and a rele-
vance label, and one binary group membership attribute. All three
continuous attributes follow a Pareto or Normal distribution (see
appendix for details). After sampling, we discretize all relevance
scores to 5 grades uniformly based on the value, similar to standard
learning-to-rank setups.We consider binary protected groups for all
fairness analyses (e.g., men and women). We sample equal number
of items from both groups. We sample 𝑁=50,000 datapoints from
both synthetic distributions.
Pareto distribution:We sample relevance from a Pareto distri-

bution with 𝑃(2.0,1.0). This dataset is referred to as synth-pareto.
Normal distribution: Relevance is sampled from a normal dis-

tribution with mean and standard deviation set to: `=2,𝜎 =1 respec-
tively. This dataset is referred to as synth-normal.
5.1.2 FairTREC 2021. The FairTREC 2021 [27] dataset consists of
Wikimedia articles ranked in response to text queries. In total, there
are 50 train and 50 test queries. To align the setup of this dataset
with our study, we choose a single query for analysis. We select a
train-set query with atleast 25,000 number of relevance annotations
available (train query ID 6). Additionally, only positive relevance
annotations are available in the FairTREC dataset. We make the as-
sumption that all the otherWikimedia articles in the corpus are not
relevant to the query. Finally, we subsample the dataset to a similar
size as the synthetic datasets to obtain a dataset with 50,000 items.
Each item in this dataset thus consists of a query, article text, and
a binary relevance judgment. To obtain a representation for ranking,
we utilize a pre-trained checkpoint of a cross-encoder model trained
on the ms-marco [21]2 task. Finally, we embed the high-dimensional
representations into three dimensions using Principal Component
Analysis (PCA). This is the final “item representation". Addition-
ally, the geographical location metadata is utilized as the sensitive
attribute for fair ranking. We binarize these categories into “major-
ity" location (Europe only) and all others (including no available
metadata). This dataset is severely imbalanced in terms of group
membership with a 90%majority in group distribution.
5.2 Simulation Protocol
We experiment in a single-query setup without personalization. In
each round, we generate synthetic clicks to simulate a set of users
clicking on items based on the position-biased examination probabil-
ity and relevance of each item to be ranked, using a position-biased
clickmodel (as specified in Sec. 3.1.1; with a positive click probability
of 1, negative click probability of 0.1, and maximum relevance grade
2https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2-v2

of 4). Then, the average click through-rate of each item is accumu-
lated to compute its propensity and the ranking model is optimized
with inverse-propensity weighted optimization (Sec. 3.1.2). In our
experiments, we use pre-computed propensity weights using result
randomization (i.e., a pre-trained propensity model) for the position-
biased click model3 while training the ranking model. The metric
optimized in each step is the list-wise ranking loss with a selection-
bias cutoff (set to 10). The final ranking system output is a list of
items, ranked in decreasing order of expected utility to users. This is
repeated for 500 iterations in total during training, and performance
is evaluated, with models checkpointed every 50 iterations. Model
loss is optimized with stochastic gradient descent with a learning
rate of 0.01.4 Performance on the test set is evaluated with the best
model checkpoint (based on validation performance). This process
is repeated with 10 random seeds, and averaged for all metrics. Note
that there are several sources of randomness in this setup, including
the items that are clicked, the initialization of parameters in the
ranking model, and sampling of data batches during training.

6 EXPERIMENTS ANDRESULTS
In this section, we seek to answer the question: To what extent can
click-based relevance be used to guide fair exposure allocation?

6.1 Studying Properties of Relevance
We empirically test if the desired criteria for relevance are met in
practice on three datasets. We assume that the true relevance labels
are proportional to true worthiness, and we refer to ground truth
relevance judgment labels as true relevance, and inferred relevance
labels as predicted relevance. We note that both the tests for oper-
ationalizing the formal criteria (see Section 4) and the thresholds for
meeting these criteria are themselves choices. For example, credibil-
ity can be measured using the mean deviation between the inferred
relevance scores and true relevance scores for point-estimates, or by
measuring the overall Spearman correlation between them (which
may be closer to the rank ordering definition). Further, to say that
a criterion is met, one may set acceptance thresholds, e.g., that a
given criterion might be met only if a specific correlation is greater
than 0.5. Thus we emphasize that meeting these criteria may be a
continuum, not a binary outcome. Summary of findings is in Table 3.
6.1.1 Credibility. We study if relevance inferred from clicks under
thisprototypical setup is credible. Specifically,we test if the top-items
across multiple runs of the learning-to-rank system (i.e., different
seeds) correspond to top items (i.e., the ordering is retained).We con-
struct boxplots showing the distribution of relevance scores (with
full list size being the size of the test set; all softmax scores within
a given ranking for ease of interpretation) for each relevance judg-
ment label grade. Ideally, we expect that itemswith higher relevance
grades would occupy lower ranks by having high inferred relevance
scores. We assert that the relevance scores are not credible if the
population medians corresponding to different relevance grades are
not significantly different at a level of 0.05.
Results. From Figure 2, we observe that for increasing values

of true relevance judgments, the medians of the inferred relevance
scores for items are monotonically increasing for all the datasets.
With a Kruskal Wallis-H test, we observe that these medians are sig-
nificantlydifferent (𝑝 <0.001).This letsusconclude that the relevance
scores are indeed reliable across runs for all three datasets. However,

3From the ULTRA-pytorch simulation repository.
4We validated that an Adagrad optimizer produced similar train loss.

https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2-v2
https://github.com/ULTR-Community/ULTRA_pytorch/blob/main/example/PropensityEstimator/randomized_pbm_0.1_1.0_4_1.0.json
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(a) fairtrec (b) synth-normal (c) synth-pareto

Figure 2: Distributions of inferred vs true graded relevance scores. Itemswith high true relevance judgmentsmust have high
inferred relevance for the credibility criterion to be met. We observe this to be true on average (i.e., ordering of medians is
monotonic, though there is considerable overlap between inferred scores for different relevance grades).

(a) fairtrec (b) synth-normal (c) synth-pareto

Figure 3: Consistency of predictions. Relevanceconsistently converges, as measured usingmean squared error (MSE).

(a) fairtrec (b) synth-normal (c) synth-pareto

Figure4:Distributionsof (︀0,1⌋︀-normalized inferredandtruerelevancescores: the inferenceprocessdoesnotpreservedistributions.

post-hoc tests may be required to test if medians of specific groups
(e.g, those with relevance grades of 2 vs 3) are significantly different.

6.1.2 Consistency. Wemeasure the mean squared error between
the predicted relevance scores at iteration 𝑖 and the final iteration
(i.e., 𝑖 = 500) for 𝑖 = 10,20,30...490. Note that we use the logit-score
predictions, before the softmax operation. These scores are com-
puted on the validation rather than test set (since test set is unseen
throughout training). Then, we assess if this mean squared error
converges. Based on the definition for consistency (see Section 4), we
need to choose a 𝜖 value to assess consistency. Here, we set 𝜖 =0.10
Results.We observe that the mean squared error converges to

the final value for all datasets, though with some noise in fairtrec.
As a result, the consistency criterion is satisfied all datasets on the
validation set. (Consistency also met for datasets on the train set.)

6.1.3 Stability. Wemeasure the deviation in inferred relevance val-
ues acrossmultiple runs.We compute the average standard deviation
in relevance measurement of a specific item across the ten random
seeds, andaverage this value across all items.Toensure that all values
can be compared across datasets, we scale predicted scores for each

item in given list by subtracting the mean and dividing by standard
deviation, all derived from the predictions for all items in that list.

Results.Among the synthetic datasets,wefind that themeanvari-
ation is is between 0.17−0.18. Since all relevance scores have been
normalized with unit-variance, this corresponds to less than one
standard deviation of the full relevance distribution. The results for
the fairtrec dataset show similar trends (variances scores ∼0.41).
As a result, we conclude that the relevance scores are reasonably
stable for all datasets.

6.1.4 Comparability. We compute twometrics to assess the com-
parability criterion: (1) the Spearman correlation between predicted
and true relevance scores for all items, (2) the ratio between average
relevance scores for groups for true and predicted relevance scores.
We assess that the criterion is met if the correlation is ≥ 0.3 from
(1) and the difference in ratios from (2) is not more than 0.05. Note
that (1) is closely tied to individual fairness since it considers predic-
tion for all items. On the other hand, (2) is directly consequential to
group-level exposure fairness: specifically, exposure is allocated in
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proportion to expected group relevance (either predicted or true) as
per several fair ranking formulations [10, 37, 53].
Results. Spearman correlation between true and predicted rel-

evance scores is 0.09 (0.09 for subgroups) for synth-normal. For
synth-pareto, the Spearman correlation between true and pre-
dicted relevance scores is 0.23 (0.20, 0.26 for female and male sub-
group respectively). This indicates that the comparability criterion
of relevance scores is better for one subgroup here. In contrast, the
trends observed on the fairtrec dataset are different: the correla-
tion is 0.27 for all items (subgroup correlations of 0.27 and 0.29).
The ratio between normalized average relevance for subgroups

using true relevance scores are close to 1 for both synthetic datasets
(by construction). Ratios between average inferred group-relevance
scores are also close to 1.00 for synth-normal and synth-pareto
respectively. The difference for fairtrec is similar, with the two ra-
tios being 1.04 and 1.02with true and inferred relevance respectively.
Thus, the target for exposure ratios may change slightly on using
true vs predicted relevance scores. In this case, as per the criteria set,
the comparability criterion is not satisfied for all datasets. The com-
parability criterion related to group-fairness are met on all datasets.
6.1.5 Availability. Weanalyze the distribution of inferred relevance
scores and compare them to the distribution of true relevance labels.
Results. By design, since a machine learning model can make pre-
dictions for all items, the continuous relevance score predictions are
available for all items. However, when we visualize the histogram of
predicted and true relevance (plots in Figure 4), we observe that the
nature of distributions is not retained.We computed the two-sample
Kolmogorov-Smirnov test [44] for goodness of fit with null hypothe-
sis being that the two samples – true and inferred relevance scores –
arise from the same distribution.Wefind that the null hypothesis can
be rejected in all cases with 𝑝≪0.001. As a result, we conclude that
the availability criterion is not satisfied for at least subset of ranked
items. This makes as sense as available “worthiness" judgements
here are graded, while predictions are continuous.

Dataset Credibility Consistency Stability Comparability Availability

fairtrec ✓ ✓ ✓ ✗ ✗
synth-normal ✓ ✓ ✓ ✗ ✗
synth-pareto ✓ ✓ ✓ ✗ ✗

Table 3: Empirical tests of relevance score desiderata on three
datasets. In this table, we summarize whether the five desired
criteria are empiricallymet in the datasets.

6.2 Impact of Violating Criteria in Practice
While relevance is the construct measured in ranking systems, the
user-facing output is a ranked list of items (which is a function of the
inferred relevance). Hence, system evaluations form an important
part of optimizing ranking systems.We evaluate ranking systems
along two axes: (1) quality or utility of ranking, (2) fairness of rank-
ing. Wemeasure the quality of rankings using NDCG@10 score for
all datasets, and obtain scores of 0.90 (near perfect score)5, 0.29, and
0.26 for fairtrec, synth-pareto, and synth-normal respectively.
To test if violating the criteria matters in practice, we measure

exposure fairness using themetrics defined in Sec. 2, all computed ei-
ther using true, graded or inferred continuous relevance scores on the
test set. From Table 4b and Table 4a, we observe that fairness assess-
ments may vary depending on whether true or inferred relevance
scores are used, and the size of difference is often dataset-dependent.
5Weusepre-trained rankingmodels for embeddings;modifying this led to similar results.

In particular, the difference does not seem particularly stark for the
synthetic datasets. However, on computingWilcoxon signed-rank
tests paired by the random seed (which influences the stochastic
initialization of the prediction model), the exposure fairness metrics
are significantly different for all datasets. Similar trends are observed
for individual fairness: the difference is significantly different, where
pairing is performed at item-level (i.e., 10000 items).We observe that
these results are sensitive to normalization of relevance scores.
Thus, fairness metrics vary depending on whether true or pre-

dicted relevance scores are used.Notably, the comparability criterion
is alsoviolated (especially for individual fairness) onall threedatasets
(Section 6.1). Analyzing the degree to which a criterion is violated
may yield interesting insights. For example, the difference in ratios
of group-level relevance assessed during comparability evaluation is
generally small for the synthetic datasets (Sec. 6.1.4), as is the differ-
ence in group-level exposure fairness (Table 4b). Thus, the difference
between fairness metrics using true and predicted relevance may be
closely tied to the comparability criterion of predicted scores.

6.3 MitigatingMeasurement Issues
In this section, we highlight examples of conditions and interven-
tions that might mitigate relevance measurement issues.

6.3.1 Mechanisms: Fairness Interventions. We study a post-hoc fair-
ness processing setup with two algorithms proposed by Geyik et al.
[31]. Both fair re-ranking algorithms (DetCons, DetConstSort) re-
arrange the top-k items in a ranked list such that the distribution
of groups matches a user-specified distribution in a greedy manner
(see Geyik et al. [31] for details). With a group-fairness lens, we
set the desired proportion of a group among the top-k items to be
the average relevance of items in that group divided by the sum of
average relevance of items for all groups.
We study the impact of these interventions on estimated group-

level exposure fairness. Do the interventionsmitigate the measure-
ment issues in fairness? FromTable 4c, the fairness interventions are
successful in reducing system unfairness (ratios are closer to 1 than
pre-intervention scores in Table 4b). In some of the six cases (two
algorithms, three datasets), the re-ranking algorithmmodifies the
system fairness to be indistinguishable from the pre-intervention
value with true relevance scores (e.g., the fairtrec+DetCons ex-
periment, and the synth-pareto+DetConstSort experiment). We
observe that results are sensitive to the top “k" chosen for re-ranking.
Thus, fairness interventionsmay be amechanism to reduce the error
in fairness assessment, but impact may vary based on the algorithm.
6.3.2 Data: Imbalanced Groups. During synthetic data generation
(Sec. 5.1),weensuredequalgroupsamplesizes.Whileclass imbalance
is not explicitly a component of themeasurementmodel of relevance,
it is often an artefact of ranking system design, and therefore could
affect system fairness evaluation. Here, we consider various levels
of data imbalance in the datasets, and study the resultant effects on
exposure fairness—i.e., does imbalanced training data mitigate or
hide the effects of relevance desiderata violations?We simulate im-
balance ranging from 50-50% (i.e., no imbalance) to 90-10% (i.e., high
imblance) by subsampling the synthetic datasets to 25,000 points.
For both datasets, we observe that the degree of imbalance im-

pacts the difference between exposure fairness metrics as com-
puted with true and predicted relevance: the difference ranges from
about −0.10 to 0.12, and about −0.03 to 0.00 for synth-pareto and
synth-normal respectively. A negative value here implies that the
exposure fairness assessed using the predicted relevance score has
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Individual Fairness

Dataset True Predicted

fairtrec 19.703 ± 0.01 19.776 ± 0.01∗
synth-normal 19.971 ± 0.03 19.966 ± 0.03∗
synth-pareto 19.523 ± 0.03 19.949 ± 0.03∗

(a)

Exposure Fairness

True Predicted

0.942±1.03 0.953±1.03∗
3.420±0.31 3.407±0.31∗
2.180±1.01 2.210±1.01∗

(b)

Exposure fairness + intervention

DetConstSort DetCons

1.023±1.11∗ 1.020±0.93
3.131±0.34∗ 1.420±0.18∗
2.154±0.91 1.901±0.69

(c)

Table 4: (a) Individual fairness, (b) Group Exposure fairnessmeasured on the test set, averaged across 10 runs, using true vs pre-
dictedrelevancescores for thesamesetof rankings, (c) Impactofgroup-level fairness interventions.Weobserve thatwhen inferred
relevance scores are used, fairnessmetric values are significantly different (pairedWilcoxon test; 𝑝 <0.05; not significant with
unpaired tests), though the size of the difference is often small. The deviation reported for individual fairnessmeasurements cor-
responds to variance across items. (c) displays fairnesswith predicted relevance after unfairnessmitigation algorithms intervene.

a lower value than that using true relevance. When fairness mea-
surements here are greater than 1 (true for most of imbalance ratios
here), this implies that the system appears more fair when predicted
relevance is used. Thus, at specific imbalance ratios, the systemmay
appearmore fair than it is. In summary, group sample size imbalance
may impact the inferred relevance scores and thus system fairness.

7 FUTURE PERSPECTIVES FOR IR
A turn towards examining fairness [14] and equity [10] in rank-
ing has inspired new research agendas in IR. Meanwhile attending
to the two-sided nature of ranking platforms has broadened the
desiderata of fair ranking systems [26, 51, 52]. Past works propose
interventions to fairly allocate opportunities and avoid exacerbat-
ing social biases based on some latent, complex notion of worthi-
ness [10, 30, 45, 55, 60, 66]. Ultimately these interventions rely on
relevance as a convenience proxy to allocate exposure. Our work
points to a pressing need for information retrieval to reengage with
research on relevance in the context of fair ranking.

Critically assessing limitations of relevance as a proxy for
worthiness. Relevance can be justified as a proxy for worthiness;
however, this justification must be done by meaningfully establish-
ing the validity and reliability of relevance in a given setting. For the
goal of fair ranking, this requires showing that the properties of the
relevance scores and resulting rankingsare alignedwith the intended
fairness goals. In our paper,we demonstrate an example of validating
several suchproperties. Concrete use cases (e.g., hiring) and intended
normative goals should guide the acceptable limitations of relevance.

The properties proposed in this paper were conceptualized based
on extensive discussions between the authors of this paper using
interdisciplinary lenses ofmachine learning, sociotechnical systems,
measurement theory, and IR. Based on the application at hand, some
of these properties may be more important than others. We also
emphasize that additional properties may still need to be identified
and tested for in various use-cases. Still, we believe that the proposed
framework of elucidation followed by examination of properties of-
fers a step towardsassessing if a specificproxy (suchas relevance) can
be reliably used as a target for fair ranking. In concurrent work with
an alternate view, Schumacher et al. [58] derive desired properties
for group fairness metrics and highlight similar nuances of metrics
that rely on relevance, further validating our findings. In contrast,
we derive desiderata for relevance to guide fair exposure allocation.

Defining ‘worthiness’ for different ranking application do-
mains.Different theoretical conceptualizations of worthiness will
correspond todifferentnormativegoals and theories of justice. For in-
stance, one could distinguish between the fairness of process (where

the worthiness score might encode the merit of the ranked subjects)
and the fairness of consequence (where the worthiness score might
correspond to the utility of a subject being top-ranked). The design
goals of a systemwill also reflect their application domains: a mar-
ketplace of online sellers might think differently about worthiness
than a hiring platform. Precisely connecting different conceptual-
izations to how they are operationalized in fair ranking systems will
aid researchers, developers, and auditors to enhance system equity.
Newmethods for obtaining worthiness scores. Beyond the

need for new definitions, this paper points to the importance of
considering howworthiness is operationalized in the context of fair
ranking as well as revealing the need for new operationalizations.
Potential approaches might vary from finding better proxies, devel-
oping newmethods for direct worthiness crowdsourcing, finding
newways of accounting for annotator biases, calibrating predictions
of relevance from browsing models, or proposing new approaches
that go beyond existing IR relevance methodologies.

8 CONCLUSIONS
Ranking systems mediate opportunity in a variety of high impact
settings [36]. In this paper, we leveraged an interdisciplinary per-
spective to show how fair ranking systems may fail to engage with
the intended goals of fair ranking, relying instead on a tenuous
assumption of relevance as worthiness. Drawing on domain knowl-
edge about relevance-based fair ranking, we derived a set of criteria
that relevance must satisfy in order to be a valid and reliable target
to guide fair exposure allocation: credibility, consistency, stability,
comparability, and availability. Using click-based relevance as a case
study, we tested if these criteria can be empirically met on three
datasets.We observe that a subset of these criteriamay be unfulfilled
in practice. Beyond click-based relevance, similar criteriawill have to
be tested for other forms of relevance estimation (e.g., crowdsourced
relevance judgments). The contributions of ourwork are in establish-
ing a measurement theory-based framework for thinking about the
role of relevance in fair exposure allocation settings. More broadly,
our work highlights the need for novel approaches to generate and
collect relevance scores in a valid, reliable manner in fair ranking
settings. Together, this reveals several open problems in relevance
measurement at scale for fair exposure allocation.
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